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INTRODUCTION

Transportation, traffic, communication and energy networks form the backbone of 
our modern society. To deal with the uncertainty, variation, unpredictability, size and 
complexity inherent in these networks, we need to develop radically new ways of thinking. 
The ultimate goal is to build self-organizing and intelligent networks. The NWO-funded 
Gravitation programme NETWORKS started in the Summer of 2014 and covers a broad 
range of topics dealing with stochastic and algorithmic aspects of networks.
 
In March 2019 the second “NETWORKS goes to school” event was organized. The aim of 
the event is to provide secondary education students and teachers a first mathematical 
introduction on network sciences. This book collects the material realised for the 
“NETWORKS goes to school” event.
 
The content of the book is intended for secondary education students and teachers, and 
aims to provide a first mathematical introduction on network sciences. In Chapter 1 all 
the necessary background material is presented, this can be used as a starting point 
before reading Chapter 2. In Section 2.1 we introduce queueing theory by showing how to 
model and analyse a queueing system with standard techniques. Section 2.2 focuses on 
mathematical genetics, and we show how probability theory can be used to describes the 
evolution of genes. Chapter 3 contains exercises on these two topics and in Chapter 4 we 
provide the corresponding solutions. Chapters 2, 3 and 4 were written with the help of Mark 
van der Boor (Eindhoven University of Technology) and Margriet Oomen (Leiden University).
 
For more information and the book of the first “NETWORKS goes to school”, please visit 
www.networkpages.nl
 
On behalf of the NETWORKS programme,
 
the organising committee of “NETWORKS goes to school”
Nicos Starreveld (University of Amsterdam)
Marta Maggioni (Leiden University)
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CHAPTER 1

Mathematical  
background

In this chapter the necessary background knowledge is provided. In 
Section 1.2 a random variable is defined, and some basic concepts  
from probability theory together with some examples are presented. 
In Section 1.3 the hierarchical lattice, a specific type of network, is 
defined.
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1.1. Basic notation

We start by introducing some notation we will use in the sequel:
(1) N for the set of natural numbers, that is N = {1, 2, 3, · · · };
(2) N0 for the set of natural numbers included zero, that is N0 = {0, 1, 2, 3, · · · };
(3) Z for the set of integer numbers, that is Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }.

1.2. Probability theory

Probability theory is the area of mathematics that studies random phenomena. For example
if the experiment is tossing a coin, then there are two possible outcomes, either heads or
tails. Each outcome occurs with probability 0.5. In order to study such a random experi-
ment we use random variables.

Random variable

A random variableX is a variable whose possible values are outcomes of a random
experiment.

We define a random variable by giving the state space, i.e. the set of all possible values the
variable can take, and the probability function, which yields the corresponding probability
that a given outcome will occur. For the coin toss for example we can define a random vari-
able by assigning to the outcome heads the value 1 and to the outcome tails the value 0. In
this case we have

X(heads) = 1 and X(tails) = 0.

The probability function for this random variable is given by

P(X = 1) = P(heads) = 0.5,

and
P(X = 0) = P(tails) = 0.5,

where for a possible set of outcomes A, P(A) denotes the probability that A occurs. A ran-
dom variable can be discrete or continuous.

Discrete random variables

A random variableX is called discrete when it can take countable many values, for
simplicity we can just say that its values are the integer numbers, that isX ∈ Z.
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Continuous random variables

A random variableX is called continuous when it can take continuously many val-
ues, for simplicity we can just say that its values are the real numbers that isX ∈ R.

For a discrete random variable, we can write down the probability that it equals a specific
value. For a continuous random variable, this is not possible, as there is a continuum of pos-
sible values. We can however specify the probability that a continuous random variable falls
in a range of values by using the density function. The probability that a continuous ran-
dom variable X assumes values in the interval [a, b] is given by the integral of the density
function, denoted by fX , over that interval:

∫ b

a

fX(x)dx = P(X ∈ [a, b]).

The result of this integration gives the area delimited by the graph of the density function
fX , the x-axis and the vertical lines given by y = a and y = b.

Expectation of a random variable

For a random variableX, discrete or continuous, we define the expectation, or ex-
pected value, as the average of a large number of independent realizations of the
random variable. We denote the expectation ofX by E(X).

For a discrete random variable its expectation is defined by

E(X) =

∞∑
k=0

kP(X = k). (1.2.1)

For a continuous random variable its expectation is defined by

E(X) =

∫ ∞

−∞
xfX(x)dx, (1.2.2)

where fX denotes the density function of the random variable, this means that

fX(x)dx = P(X ∈ dx). (1.2.3)

As we will see in the sequel, if the random variable takes only positive values then the in-
tegral in the expectation starts from 0 instead of−∞.

1.2.1. Bernoulli random variable
Bernoulli random variable

A Bernoulli random variable describes the outcome of any single random experi-
ment that asks a yes-no question, like tossing a coin.
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It takes the value 1 with probability p and the value 0 with probability 1 − p. Consider for
example a coin where one side is heavier, then this is a biased coin where one side is fa-
voured. We will use B(p) to denote a Bernoulli random variable with probability p. A Bernoulli
random variable has expectation given by

E(B(p)) = 1 · P(B(p) = 1) + 0 · P(B(p) = 0) = p. (1.2.4)

1.2.2. Binomial random variable
Binomial random variable

A binomial random variable describes the number of successes in a sequence of
independent experiments, each asking a yes–no question.

We make the following assumptions:
• the number n of observations is fixed;
• each observation is independent of the other observations;
• each observation represents one of two outcomes: success or failure;
• the probability p of success is exactly the same for each trial.

Under these assumptions, we can describe each binomial random variable by using the
parameters n and p. We will denote a binomial random variable by B(n, p). A binomial ran-
dom variable has state space {0, 1, . . . , n}, and the probability that B(n, p) is equal to k is
given by

P(B(n, p) = k) =

(
n

k

)
pk(1− p)n−k

where (
n

k

)
=

n!

k!(n− k)!

is the binomial coefficient. The symbol
(
n
k

)
is read as ‘n choose k’, as this is the number

of ways to choose k different elements from a total of n elements, where the order of ele-
ments does not matter. The factorial of n is denoted by n! and it is equal to the product
n · (n− 1) · (n− 2) · . . . · 1. The binomial random variable has expectation equal to

E(B(n, p)) =

∞∑
k=0

kP(B(n, p) = k) =

n∑
k=0

k

(
n

k

)
pk(1− p)n−k = np. (1.2.5)

The exact derivation of this result is far away from the scope of this booklet.

EXAMPLE 1.2.1. Suppose that we have a total of 5 colours, and we wish to know how many
combinations there are of 3 different colours, where the order of the colours does not mat-
ter. Then n = 5 and k = 3, and (

5

3

)
=

5!

3!2!
= 10.
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We could also reason in a different way. For the first choice we have a total of 5 possible
colours, for the second choice we have 4 possible colours and for the third choice we have 3
possible colours. The total of combinations of three colours is then 5 · 4 · 3 = 5!/2!. However,
the order of colours did not matter so we still have to divide by the number of ways in which
we can order 3 colours, which is 3 · 2 · 1 = 3!.

EXAMPLE 1.2.2. Consider a coin toss, where possible outcomes are heads or tails. Sup-
pose that we have a fair coin, i.e., the probability for heads is the same as it is for tails. If
we toss the coin 10 times, then the number of coin tosses that came heads from those ten
tosses has a binomial distribution with parameters n = 10 and p = 1

2
. The probability of

getting exactly four heads is equal to

P(X = 4) =

(
10

4

)
1

2

4
(
1− 1

2

)10−4

=
105

512
≈ 0.205.

1.2.3. Geometric random variable

Geometric random variable

A geometric random variable describes the number of failures in a sequence of
random experiments, each asking a yes-no question, until the first success.

We make the following assumptions:
• each observation is independent of the other observations;
• each observation represents one of two outcomes: success or failure;
• the probability p of success is exactly the same for each trial.

Under these assumptions, we can describe each geometric distribution by using the para-
meter p, we will denote a geometric random variable byG(p). The geometric random vari-
able has state space {0, 1, 2, . . .}, and the probability thatG(p) is equal to k is given by

P(G(p) = k) = (1− p)kp.

When the random variableG(p) is equal to k then we know that k failures have occurred
before the first success. The probability of a failure is equal to 1− p and by the assumptions
above the experiments we perform are independent of each other. The geometric random
variable has expectation equal to

E(G(p)) =
∞∑

k=0

kP(G(p) = k) =

∞∑
k=0

k(1− p)kp =
1− p

p
. (1.2.6)

Again the exact derivation of the formula is far away from the scope of this booklet. For
some more details on this formula we refer to the solution of Exercise 4.2.1.
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EXAMPLE 1.2.3. Consider a coin toss, where possible outcomes are heads or tails. Sup-
pose that we have an unfair coin, i.e., the probability for heads is 2

3
and the probability for

tails is 1
3
. Then the probability to get 5 times tails before the first heads is equal to

P(G(
2

3
) = 5) =

(
1

3

)5
2

3
≈ 0.0027.

1.2.4. Exponential random variable
Exponential random variable

The exponential random variable is a continuous random variable and describes
the time elapsed between events that occur continuously and independently at a
constant intensity.

An exponential random variable is characterised by a parameter λ, called the intensity. The
larger this parameter is the higher the frequency of the arriving events. A random variable
having the exponential distribution with parameter λ, denoted by E(λ), has the following
probability distribution function

P(E(λ) ≤ x) = 1− e−λx, x ≥ 0, (1.2.7)

and a probability density function given by

fλ(x) = λe−λx. (1.2.8)

The expectation of the exponential random variable is equal to

E(E(λ)) =

∫ ∞

0

xfE(λ)(x)dx =

∫ ∞

0

xλe−λxdx =
1

λ
. (1.2.9)

The exponential random variable has the memoryless property, i.e. that means that

P(E(λ) > x+ y|E(λ) > y) = P(E(λ) > x), x, y ≥ 0. (1.2.10)

This memoryless property is quite remarkable, so let’s look at it from a practical side. Sup-
pose the time until the bus arrives is exponentially distributed. If that would be the case,
then if the bus didn’t arrive for an hour, then it would still take the same amount of time un-
til the bus arrives. But in reality we expect that if the bus didn’t arrive for an hour, then it will
probably arrive soon.

1.2.5. Poisson process
Finally, we introduce the Poisson process. This is a process where events happen once
every while. The time between events is exponentially distributed. Since the exponential
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distribution is memoryless, the Poisson process has a very remarkable property. If no event
happened for a while, it doesn’t imply that some event will occur soon. As an example,
consider the time until you hit a specific number on a roulette wheel. If that specific num-
ber didn’t show up for a while, that doesn’t make it more likely for the number to show up
sooner than normal. In other words: the history of the process has no influence on the fu-
ture.

1.3. The hierarchical lattice
The hierarchical lattice is a type of a network with a very specific structure. The hierarchical
lattice is characterised by a parameter d and resembles a tree whose branches can keep
branching infinitely often.

Tree

A tree is defined as a graph which has no cycles. In such a graph any two points are
connected by exactly one path. In the figures below you can find some examples of
trees. The points in a tree that are connected with only one other point are called
the leaves of the tree.

Let’s see in steps how the hierarchical lattice is constructed. As said before the hierarchical
lattice consists of infinitely many layers. The first step is to see what happens at the the
bottom layer, think of the bottom layer as the leaves of the tree. We need to define how
many leaves, or nodes, we will place at the bottom layer, say d. For simplicity we illustrate
the steps for the case we have d = 3, that is 3 leaves at the bottom layer. We start thus by
placing 3 points in layer 0

Afterwards we connect these points with a single ancestor (second generation). This way
we obtain the first point in layer 1.

In the next step we create d, in our case d = 3, copies of this graph, this yields
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Connect the second generation point, those are the points in layer 1, with a third generation
point, this yields the first point in layer 2.

Following the same steps we also create the higher order generations. We observe that
building the network according to this algorithmic procedure leads to infinitely many points
in layer zero. The hierarchical lattice consists only of the points in layer zero, which are
the blue points in the figures; the ancestors, which are the green points, are the branch-
ing points that allow us to build the graph. A hierarchical lattice with parameter d will be
denoted by Ωd, in our case Ω3. We observe that the way to construct the graph is rather
simple. But we would also like to have an efficient way to characterise all the points belong-
ing to Ω3. We do this by giving a label to each point based on its position in the lattice. We
look at layer i, for i = 0, 1, 2, . . ., and starting from the left we assign to consecutive points
the numbers 0, 1, 2.

Label of a point in the hierarchical lattice

Every point in the lattice is then identified with an infinitely long sequence where
each element can take one of the values 0, 1, 2. The i-th element in the sequence
gives the position in the corresponding block of length 3 in layer i.

The hierarchical lattice with the corresponding labels is depicted in Figure 1.3.1
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Figure 1.3.1. Hierarchical lattice with labels

EXAMPLE 1.3.1. Let’s identify the following points:
◦ The sequence (1, 1, 1, 0, 0, 0, . . .) corresponds to the point
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◦ The sequence (0, 2, 1, 0, 0, 0, . . .) corresponds to the point

◦ The sequence (0, 0, 2, 0, 0, 0, . . .) corresponds to the point
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The formal characterisation of the hierarchical lattice is given below

Ω3 =


ξ = (ξn)n∈N0 : ξn ∈ {0, 1, 2},

∑
n∈N0

ξn < ∞


 . (1.3.1)

This set contains exactly all sequences with only a finite amount of positive entries, which
is due to the fact that each point has a label of finite length. These definitions may seem
rather intimidating so lets break them down into pieces. Lets see how an element ξ =

(ξn)n∈N0 looks like. The notation (ξn)n∈N0 refers to a sequence of infinite length, that is

(ξn)n∈N0 = (ξ0, ξ1, ξ2, . . .).

We need to define which are the possible values of the elements of this sequence, i.e. of ξn.
Each one of these elements can be equal to one of the numbers 0, 1, 2.

Examples of sequences

The elements
• ξ = (0, 0, 0, 0, . . . , 0, . . .)

• η = (1, 0, 0, 0, . . . , 0, . . .)

• ψ = (2, 2, 2, 2, 0, 0 . . . , 0, . . .)

all belong to Ω3.

What we observe in all these elements is that after some position in the sequence all the
elements that follow are equal to zero. This is the third condition we impose on elements
from Ω3, that after some position in the sequence all the elements that follow are equal to
zero. This is written in abstract mathematical language as

∑
n∈N0

ξn < ∞.

As an exercise we recommend to try and understand the interpretation of this condition.
The next step is to define a distance between points on the hierarchical lattice Ω3, you
would like to know when are point considered to be far from each other and when close
to each other. The distance function between the points ξ and η is given by

d(ξ, η) = min{m ∈ N0 : ξn = ηn, ∀n ≥ m}. (1.3.2)

EXAMPLE 1.3.2. In this example we will compute the distance of some elements from Ω3.
• ξ = (0, 0, 0, 0, . . .), i.e. the first point on the left, and η = (1, 0, 0, 0, . . .). Then d(ξ, η) = 1.
• ξ = (0, 0, 0, 0, . . .) and η = (0, 1, 0, 0, . . .). Then d(ξ, η) = 2.
• ξ = (2, 0, 0, 0, . . .) and η = (0, 1, 0, 0, . . .). Then d(ξ, η) = 2.
• ξ = (0, 0, 0, 0, . . .) and η = (0, 0, 1, 0, . . .). Then d(ξ, η) = 3.
• ξ = (0, 0, 1, 0, . . .) and η = (1, 0, 1, 0, . . .). Then d(ξ, η) = 1.
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◦ The sequence (0, 2, 1, 0, 0, 0, . . .) corresponds to the point

◦ The sequence (0, 0, 2, 0, 0, 0, . . .) corresponds to the point
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CHAPTER 2

Queueing theory  
and networks in  
genetics

In this chapter some results from queueing theory and mathematical 
genetics are presented. Section 2.1 is about queueing theory, a branch 
of probability theory that studies cases and systems where there is 
demand for some scarce resource. Section 2.2 concerns mathematical 
genetics and the mechanisms that govern the evolution of genes. 
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2.1. Queueing theory - Waiting in an efficient way

Queueing theory

Queueing theory refers to the branch of probability theory that studies cases and
systems where there is demand for some scarce resource.

The main characteristics of such systems relate to clients who arrive to, possibly multiple,
servers and receive some form of service. After being served a client may depart from the
system or proceed to a next service station. Neither the customers nor the servers are
necessarily actual individuals; the clients may be objects, phone calls, orders for some
product while the servers may be computer programs or machines. Some typical everyday
examples of queueing systems can be found in supermarkets, industrial production sys-
tems and hospitals. In a supermarket customers arrive to the counters, they may have to
wait in the queue until their turn comes, they are served and then leave the supermarket. In
an industrial production system, like a factory producing cars, the products have to undergo
multiple stages until they are assembled and the servers may be either machines or indi-
viduals. Finally, patients arriving to a hospital often need access to resources like doctors,
beds, medicine and equipment. The time a patient spends in the hospital using medical re-
sources and possibly occupying a bed, constitutes his service time. A new patient can go
into treatment only when the hospital has the necessary resources available, for example
only if there are free beds.

Performance measures

The performance of queueing systems is expressed using performance measures.
The most commonly used performance measures are the queue length and the wait-
ing time.

2.1.1. Mathematical model of a queue

Amathematical model

When we speak of a mathematical model we mean a description of a system or
some real life situation, in this case a queue, using mathematical concepts.

Setting up a suitable mathematical model for an application is an important part of doing
mathematics. A mathematical model describes real life situations in such a way that it en-
ables you to do computations. In this section we describe the basic principles used in order
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to construct a mathematical model for a queueing system. At an abstract level a model of a
queueing system has to take into account the following quantities:

• the time between consequent arriving customers, called the interarrival time;
• the time the server needs to serve a customer, called the service time of that cus-
tomer;

• the number of servers.
And that is not all! More difficult queueing systems might also have limited waiting rooms,
the servers might be connected in a network and customers may leave the system if they
are in there for too long. In queueing systems congestion, or long queues, typically appear
when many customers join the system in a short time, or if the server takes long to serve
the customers: this is all caused by the randomness in the service requirements and the ar-
rival process of customers. Hence queueing models are typically of a probabilistic nature,
and the interarrival and service times are considered to have some known probability dis-
tribution. To understand the behavior of a system and to optimise its performance, it is im-
portant to take the randomness into account, starting with determining appropriate probab-
ility distributions for the interarrival and service times.
In what follows we describe the simplest mathematical model of a queueing system, called
the M/M/1 model. In the M/M/1 model

• the time between consecutive arriving customers has an exponential distribution with
parameter λ (or equivalently, customers arrive according to a Poisson process with
rate λ);

• the time the server needs to serve a customer has an exponential distribution with
parameter µ;

• there is one server present in the system.
In Figure 2.1.1 we show this using an illustration.
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Such illustrations are typical when representing queueing systems, we use an incoming ar-
row for the stream of arriving customers, a circle for each server and a (blue) line for each
customer in the queue. In the M/M/1 model we suppose that the system has infinite space
so infinitely many customers can wait in the queue. Denote byQ a random variable de-
scribing the number of customers in the system, that is the number of customers waiting
in the queue plus the customer, if the system is not empty, that is being served. ThenQ has
as state space the set {0, 1, 2, . . .}. We find the probability distribution ofQ using an argu-
ment that is called flow conservation argument. Let’s see how it works. We start by drawing
a diagram to denote the number of jobs in the system, such a diagram is depicted in Figure
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2.1. Queueing theory - Waiting in an efficient way

Queueing theory

Queueing theory refers to the branch of probability theory that studies cases and
systems where there is demand for some scarce resource.

The main characteristics of such systems relate to clients who arrive to, possibly multiple,
servers and receive some form of service. After being served a client may depart from the
system or proceed to a next service station. Neither the customers nor the servers are
necessarily actual individuals; the clients may be objects, phone calls, orders for some
product while the servers may be computer programs or machines. Some typical everyday
examples of queueing systems can be found in supermarkets, industrial production sys-
tems and hospitals. In a supermarket customers arrive to the counters, they may have to
wait in the queue until their turn comes, they are served and then leave the supermarket. In
an industrial production system, like a factory producing cars, the products have to undergo
multiple stages until they are assembled and the servers may be either machines or indi-
viduals. Finally, patients arriving to a hospital often need access to resources like doctors,
beds, medicine and equipment. The time a patient spends in the hospital using medical re-
sources and possibly occupying a bed, constitutes his service time. A new patient can go
into treatment only when the hospital has the necessary resources available, for example
only if there are free beds.

Performance measures

The performance of queueing systems is expressed using performance measures.
The most commonly used performance measures are the queue length and the wait-
ing time.

2.1.1. Mathematical model of a queue

Amathematical model

When we speak of a mathematical model we mean a description of a system or
some real life situation, in this case a queue, using mathematical concepts.

Setting up a suitable mathematical model for an application is an important part of doing
mathematics. A mathematical model describes real life situations in such a way that it en-
ables you to do computations. In this section we describe the basic principles used in order
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2.1.2.
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Figure 2.1.2. Possible states of the system

Each square represents a possible state of the system, for example the square with 0 rep-
resents the state that there are no customers in the system.

2.1.2. Flow conservation argument
Suppose thatQ = i, that is there are i customers in the system. Then two things can occur,
the customer who is being served departs from the system before a new customer arrives,
or a new customer arrives before the customer who is being served departs the system.
The first event corresponds to the transition {Q = i} → {Q = i − 1} since a customer de-
parts. The service time has an exponential distribution with parameter µ, hence the trans-
ition {Q = i} → {Q = i − 1} occurs with rate µ. On the other side the second event cor-
responds to the transition {Q = i} → {Q = i + 1} since a customer arrives to the system.
The interarrival time has an exponential distribution with parameter λ, hence the transition
{Q = i} → {Q = i + 1} occurs with rate λ. We can illustrate these transitions using a flow
diagram, as in Figure 2.1.3, where we have chosen the case i = 3.
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Figure 2.1.3. Flow diagram
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Doing this for all possible states we obtain the flow diagram in Figure 2.1.4.
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Figure 2.1.4. Complete flow diagram

We are going to compute the probabilities pk = P(Q = k), for k = 0, 1, . . . using a flow
conservation argument.

Flow Conservation Argument

The probability flux in any subset of states is equal to the probability flux out of that
subset of states. Intuitively, this means that you enter a state just as many times as
you leave a state.

Consider for example the set consisting of the state there are no customers in the system,
that is {0}.
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Then the probability flux out of the set {0} is λp0 because we are in state 0 with probability
p0 and we leave it with rate λ. The probability flux into the set {0} is equal to µp1, since we
can reach state 0 only from state 1, we are in state 1 with probability p1 and the transition
from state 1 to state 0 happens with rate µ. Then we get the first equation

λp0 = µp1 ⇒ p1 =
λ

µ
p0 = ρp0,
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Each square represents a possible state of the system, for example the square with 0 rep-
resents the state that there are no customers in the system.

2.1.2. Flow conservation argument
Suppose thatQ = i, that is there are i customers in the system. Then two things can occur,
the customer who is being served departs from the system before a new customer arrives,
or a new customer arrives before the customer who is being served departs the system.
The first event corresponds to the transition {Q = i} → {Q = i − 1} since a customer de-
parts. The service time has an exponential distribution with parameter µ, hence the trans-
ition {Q = i} → {Q = i − 1} occurs with rate µ. On the other side the second event cor-
responds to the transition {Q = i} → {Q = i + 1} since a customer arrives to the system.
The interarrival time has an exponential distribution with parameter λ, hence the transition
{Q = i} → {Q = i + 1} occurs with rate λ. We can illustrate these transitions using a flow
diagram, as in Figure 2.1.3, where we have chosen the case i = 3.

𝜇𝜇𝜆𝜆

0 1 2 3 4

0 1 2 3 4
𝜆𝜆

𝜇𝜇

0 1 2 3 4
𝜆𝜆𝜆𝜆 𝜆𝜆𝜆𝜆𝜆𝜆

𝜇𝜇𝜇𝜇 𝜇𝜇 𝜇𝜇 𝜇𝜇

0 1 2 3 4
𝜆𝜆𝜆𝜆 𝜆𝜆𝜆𝜆𝜆𝜆

𝜇𝜇𝜇𝜇 𝜇𝜇 𝜇𝜇 𝜇𝜇

Figure 2.1.3. Flow diagram



NETWORKS GOES TO SCHOOL2424 NETWORKS GOES TO SCHOOL

where ρ = λ
µ
. Suppose now that we consider the subset {0, 1}, then we obtain the equa-

tions
(λ+ µ)p1 = λp0 + µp2 ⇒ p2 = ρ2p0.

Working similarly we obtain the equations

(λ+ µ)pi = λpi−1 + µpi+1 ⇒ pi+1 = ρi+1p0.

Hence it suffices to compute p0, which denotes the probability that the system is empty. We
know that the sum of all the probabilities has to be equal to one, hence

∞∑
i=0

pi = 1.

Solving this equation yields
p0 = 1− ρ,

and we obtain the following result for the desired probabilities,

pi = ρi(1− ρ), i = 0, 1, . . . . (2.1.1)

Distribution of the number of customers

The random variableQ, denoting the number of customers in the queue when the
system is in equilibrium, has a geometric distribution with parameter ρ.

2.1.3. Load balancing
In many queueing systems jobs arrive at a central dispatcher and need to be sent to one of
many servers. Typical examples are

• People arriving at the queues in a shop and need to be sent to one of the many cashiers;
• Texts arriving at a central server and need to be sent to one of many satellites;
• Cars arriving at a toll road and need to be sent to one of many booths;
• Data arriving at a dispatcher and need to be sent to one of many servers.

In such a system, consisting of thousands of servers, as in the case of data centres, we have
a dispatcher who sends jobs to various queues. An illustration of such a system is given in
Figure 2.1.5.
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Figure 2.1.5. System of queues

First, let’s consider what happens when the server would distribute jobs randomly. The dis-
patcher will randomly choose a server for every incoming job, with equal probability. This
means that every server receives jobs with the same rate. Moreover, if you split a Poisson
process into multiple streams, every stream is independent and also a Poisson process. So
in this context, all of these servers will become independent M/M/1 queues. We observe
that some queues are empty, other queues have one job, some queues more than one. If
we order them, it would look like as in Figure 2.1.6.
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Figure 2.1.6. We order the queues based on the number of jobs

We study the fraction of queues that have i jobs at time 0, denote this quantity by fi(0).
We have 21 queues which are empty, 9 queues which have one job, 4 queues which have
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where ρ = λ
µ
. Suppose now that we consider the subset {0, 1}, then we obtain the equa-

tions
(λ+ µ)p1 = λp0 + µp2 ⇒ p2 = ρ2p0.

Working similarly we obtain the equations

(λ+ µ)pi = λpi−1 + µpi+1 ⇒ pi+1 = ρi+1p0.

Hence it suffices to compute p0, which denotes the probability that the system is empty. We
know that the sum of all the probabilities has to be equal to one, hence

∞∑
i=0

pi = 1.

Solving this equation yields
p0 = 1− ρ,

and we obtain the following result for the desired probabilities,

pi = ρi(1− ρ), i = 0, 1, . . . . (2.1.1)

Distribution of the number of customers

The random variableQ, denoting the number of customers in the queue when the
system is in equilibrium, has a geometric distribution with parameter ρ.

2.1.3. Load balancing
In many queueing systems jobs arrive at a central dispatcher and need to be sent to one of
many servers. Typical examples are

• People arriving at the queues in a shop and need to be sent to one of the many cashiers;
• Texts arriving at a central server and need to be sent to one of many satellites;
• Cars arriving at a toll road and need to be sent to one of many booths;
• Data arriving at a dispatcher and need to be sent to one of many servers.

In such a system, consisting of thousands of servers, as in the case of data centres, we have
a dispatcher who sends jobs to various queues. An illustration of such a system is given in
Figure 2.1.5.
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two jobs and 1 queue which has three jobs. Hence we have that f0(0) = 0.6, f1(0) =

0.26, f2(0) = 0.11 and f3(0) = 0.03. At a later time customers will have arrived and will
have departed, hence these fractions will have changed, an example is given in Figure 2.1.7.

Figure 2.1.7. Queues at a later time

In this case we have f0(t) = 0.51, f1(t) = 0.29, f2(t) = 0.17 and f3(t) = 0.03. We want
to compute how quickly these fractions change. Consider first f0(t), it can increase when
a queue having one job becomes empty and it can decrease when a customer arrives to an
empty system. The first event occurs with rate µ while the second event occurs with rate
λ. This information shows how f0(t) changes over time, this can be quantified using the
following differential equation

df0(t)
dt = −λf0(t) + µf1(t). (2.1.2)

Working similarly for fi(t) we obtain

dfi(t)
dt = −λ(fi(t)− fi−1(t)) + µ(fi+1(t)− fi(t)), for i = 0, 1, . . . . (2.1.3)

From this set of differential equations, you can once again find the equilibrium distribution.
In order to find this, we set dfi(t)/dt = 0, since the fraction should not change anymore
in equilibrium. After this, you obtain the exact same equation as for the M/M/1 queue, with
fi(t) = pi, where pi, for i = 0, 1, . . . was computed in (2.1.1).
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Dispatching schemes

Popular job dispatching schemes are join the shortest queue, random, round robin
and power-of-d.

In the join the shortest queue scheme the dispatcher sends a job to the server with the least
amount of jobs, this is the most efficient job dispatching scheme but demands a lot of work
from the dispatcher to keep track of all jobs in all servers. In the random scheme the dis-
patcher sends a job to a random server and in the round robin scheme the dispatcher sends
jobs to servers in a cyclic way.
We will look in more detail the power-of-d balancing scheme. In this scheme when a job ar-
rives you choose d servers at random and you dispatch the job at the one with the shortest
queue. For simplicity let’s have a look at the case d = 2. Denote by gi(t) the number of
servers with queue length larger or equal than i. Then we have the following differential
equation for gi(t),

dgi(t)
dt = gi+1(t)− gi(t) + λ(gi−1(t)

2 − gi(t)
2). (2.1.4)

If we consider the system to be in equilibrium, which means that the probability distribu-
tion describing its state does not change over time, we have then that the derivatives on
the left-hand side above are equal to zero and the expressions on the right-hand side are
independent of the time t. Hence we obtain the equations

g∗i+1 − g∗i + λ(g∗i−1
2 − g∗i

2
) = 0, (2.1.5)

which yields the solution
g∗i ∼ λ2i−1, i ≥ 0. (2.1.6)

2.1.4. Load balancing with additional mechanics
So far, we have shown a very brief introduction to the mathematics that occur in simple
queueing models. But it doesn’t end here! There are many more models, and also many
more ways to solve these type of models. We briefly name a couple of similar models.
First, we look at redundancy models. Every customer that joins the system, joinsmultiple
queues at once. Whenever the customer is served by one of the servers, it will exit from all
other queues. This sounds weird when you think of a supermarket, but it makes more sense
in the context of data centres, where queries duplicate themselves and may be redundantly
processed by multiple servers. In these models it is crucial that you duplicate sufficiently,
but also not too much, as this will overload the system.
Finally, there are models where there are different types of customers and servers. Some
customers may take more time, some servers may be slower, or maybe some customers
can only be served by specific servers. And to make it worse, there are systems where jobs
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two jobs and 1 queue which has three jobs. Hence we have that f0(0) = 0.6, f1(0) =

0.26, f2(0) = 0.11 and f3(0) = 0.03. At a later time customers will have arrived and will
have departed, hence these fractions will have changed, an example is given in Figure 2.1.7.
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In this case we have f0(t) = 0.51, f1(t) = 0.29, f2(t) = 0.17 and f3(t) = 0.03. We want
to compute how quickly these fractions change. Consider first f0(t), it can increase when
a queue having one job becomes empty and it can decrease when a customer arrives to an
empty system. The first event occurs with rate µ while the second event occurs with rate
λ. This information shows how f0(t) changes over time, this can be quantified using the
following differential equation

df0(t)
dt = −λf0(t) + µf1(t). (2.1.2)

Working similarly for fi(t) we obtain

dfi(t)
dt = −λ(fi(t)− fi−1(t)) + µ(fi+1(t)− fi(t)), for i = 0, 1, . . . . (2.1.3)

From this set of differential equations, you can once again find the equilibrium distribution.
In order to find this, we set dfi(t)/dt = 0, since the fraction should not change anymore
in equilibrium. After this, you obtain the exact same equation as for the M/M/1 queue, with
fi(t) = pi, where pi, for i = 0, 1, . . . was computed in (2.1.1).



NETWORKS GOES TO SCHOOL2828 NETWORKS GOES TO SCHOOL

are not served in order of appearance. This can mean that the customer that arrived before
you, can be processed first. This makes the analysis of such models much more complic-
ated!

On the Network Pages

For an application of these techniques into data centres we refer to the article of
Mark van der Boor on the Network Pages, The quest for a better Internet (network-
pages.nl/the-quest-for-a-better-internet). In a relevant article, Look it up on the In-
ternet!” - How Web Search Works, Nelly Litvak explains how web search works. Have
a look at it on the Network Pages (networkpages.nl/look-it-up-on-the-internet-how-
web-search-works).
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2.2. Networks in genetics - Understanding the evolution of genes
When you see the title you would maybe expect to read a biology book. However to de-
scribe the evolution of genes biologists actually use mathematics.

Figure 2.2.1. Evolution of pigs.

In Figure 2.2.1 1 you see the evolution of pigs depicted. At certain moments a new pig spe-
cies emerges. The DNA of this new pig species has different types of genes than his an-
cestors. With what probability does it happen that some mutation in the DNA occurs? And
with what probability does the mutation in the DNA lead to a new species? To answer these
questions you need probability theory.
In Figure 2.2.22 you see another type of genetic evolution. This population of starfish lives
at the Northeast Pacific and there are two types occurring in the population: purple starfish
and orange starfish. You can ask yourself the question whether there will be always orange

1Taken from Chen K, Baxter T, Muir WM, Groenen MA, Schook LB. Genetic Resources, Gen-
ome Mapping and Evolutionary Genomics of the Pig (Sus scrofa). Int J Biol Sci 2007; 3(3):153-165.
doi:10.7150/ijbs.3.153.

2Ochre sea stars (Pisaster ochraceus) taken at Ganges Harbour, Salt Spring Island, British
Columbia, made by D. Gordon E. Robertson, for Wikipedia.
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are not served in order of appearance. This can mean that the customer that arrived before
you, can be processed first. This makes the analysis of such models much more complic-
ated!

On the Network Pages

For an application of these techniques into data centres we refer to the article of
Mark van der Boor on the Network Pages, The quest for a better Internet (network-
pages.nl/the-quest-for-a-better-internet). In a relevant article, Look it up on the In-
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Figure 2.2.2. Population of starfish.

and purple starfish living together in this population. Or will at a certain time one type, or-
ange or purple die out? And if the answer is yes, how long will it take before one of the two
types dies out? In this lecture we will study the last question with the help of probability
theory and a mathematical model, see Section 3.1.1 for an explanation of what a mathem-
atical model is.

2.2.1. The Wright-Fisher model
The mathematical model we will use is called the Wright-Fisher model.

The Wright-Fisher model

In the Wright-Fisher model we have a population with two types of individuals. For
example you can think about the starfish population.

The two types of starfish we consider are the purple starfish and the orange starfish. In the
Wright-Fisher model you actually do not have to specify the species of your population, as
long as there exist two different types you can use the model. So instead of starfish you can
also think of a population with red and blue butterflies or a population of bacteria, where
the bacteria have one of two types of a certain gene. To explain the Wright-Fisher model we
use a two type population where the types are called red and blue. At each generation the
population evolves according to the following two rules:

• Each individual chooses an individual (possibly itself) from the current generation and
give birth to a child with the type of the chosen individual.

• The child replaces the parent.
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These two rules that describe the evolution of the population are called the dynamics of our
model. The production of offspring is called resampling. In Figure 2.2.3 you see an example
of a population with five individuals and five generations. The generations are labelled by
the time instances they live at.
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Figure 2.2.3. Wright-Fisher model with 5 individuals. An example of the outcome at the first 4
time steps is depicted. The black lines indicate which parent is chosen. So the first individual

on the left has chosen the type of itself for its child and therefore stays blue. The second
individual has chosen the third one and so on.

From Figure 2.2.3 you see that the number of individuals in each generation is the same.
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ulation stays constant. However you can interpret the model in a different way. For ex-
ample in Figure 2.2.3 the first individual on the left gets two children which inherit the blue
type. The second individual gets no children. The third one gets one child, which has type
blue, the fourth one gets two children that are red and the fifth one gets no children. This
seems a more natural interpretation. The assumption that the total number of individuals
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2.2.2. Computing probabilities with the Wright-Fisher model
Mathematically we describe the Wright-Fisher model as follows:

X(t) = number of red individuals at time t. (2.2.1)
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Figure 2.2.2. Population of starfish.
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For example in Figure 2.2.3 we haveX(0) = 2,X(1) = 2,X(2) = 3,X(3) = 1 andX(4) = 0.
Extending Figure 2.2.3 we should getX(5) = 0, since each individual at time 4 can only
choose a blue individual. Therefore we say 0 is a fixed point of the dynamics. By a similar
reasoning 5 is a fixed point of the dynamics, when our population consist of 5 individuals.
Suppose we have 5 individuals in our population and in generation 0 there are 2 red indi-
viduals, soX(0) = 2. We want to compute the probability P(X(1) = 3). To do so we first
introduce another random variable. For 0 ≤ i ≤ 5 let

Yi(t) =



1 if at time t individual i is red

0 otherwise .
(2.2.2)

To compute P(Y1(1) = 1) recall that the first individual in generation 0 chooses at random
another individual from the population. Since in generation 0X(0) = 2, this is the same as
drawing a ball from an urn containing 2 red balls and 3 blue balls. Therefore

P(Y1(1) = 1) =
2

5
= 0.4.

Also the second individual chooses an individual randomly from the population. Hence also

P(Y2(1) = 1) = 0.4

and in general we have
P(Yi(1) = 1) = 0.4.

Therefore for all 1 ≤ i ≤ 5, Yi(1) is a Bernoulli random variable with success probability
p = 2

5
= 0.4. The total number of red individuals in generation 1 can now be written as

X(1) =

5∑
i=1

Yi(1).

Since the sum of n Bernoulli variables with success parameter p is distributed as Bin(n, p),
X(1) is distributed as Bin(5, 0.4) (we refer to Section 1.2 for all necessary definitions and
background knowledge). Hence

P(X(1) = 3) =

(
5

3

)(
2

5

)3 (
3

5

)2

= 0.2304.

Since E[Yi(1)] = 1 · 2
5
+0 · 3

5
for all 1 ≤ i ≤ 5, we can easily compute E[X(1)] with the help of

the sum formula for expectations. Namely

E[X(1)] = E[
5∑

i=1

Yi(1)] =

5∑
i=1

E[Yi(1)] = 5 · 2
5
= 2. (2.2.3)
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Therefore if we start with 2 red individuals at timestep 0, we actually also expect 2 red in-
dividuals in timestep 1. So the expected value of the number of red individuals has not
changed from time 0 to time 1. Suppose we knowX(1) = 2, then

P(Yi(2) = 1|X(1) = 2) =
2

5
= 0.4

for all individuals 1 ≤ i ≤ 5. Hence given thatX(1) = 2 we have that Yi(2) is distributed as a
Bernoulli variable with success probability 0.4 and thereforeX(2) is distributed Bin(5, 0.4).
For example

P(X(2) = 4) =

(
5

4

)(
2

5

)4 (
3

5

)
= 0.0768.

In Exercise 3.3.1 you will compute more probabilities using the the Wright-Fisher model.
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2.2.3. Genetic Diversity

With the Wright-Fisher model you can examine genetic diversity.

Genetic diversity

We say that there is genetic diversity in a population if there are both red and blue
individuals in the population.

To compute the probability that there is genetic diversity in a certain generation, we pick
two individuals from that generation at random. Subsequently we compute the probabil-
ity that the two individuals are of the same type with the following procedure, which is also
illustrated in Figure 2.2.4 below for a population of five individuals. In Figure 2.2.4a two
randomly drawn individuals, denoted by a and b are shown. In Figure 2.2.4b a line from in-
dividual a is drawn to its parent in third generation (t = 3), which we call a1 and the same
is done for b, so that a parent b1 is found. From a1 a line is drawn to its parent in the second
generation (t = 2) and this continues until the parent of a at time t = 0 is found, which
is called a4. In same way the parent b4 of b is found. The paths from a to a4 and b to b4 are
called the (ancestral) lineages of respectively a and b. The parent a4 of a in generation 0 is
called the ancestor of a and similarly b4 is the ancestor of b. Since in each time step an in-
dividual inherits its type from its parent, the type of individual a is the same as the type of
its ancestor a4. Similarly the type of individual b is the type of its ancestor b4. Note that the
paths drawn to the ancestors a4 and b4 in generation 0 are only one of all the possible paths
from a to a4 and b to b4. In Figure 2.2.4b the ancestral lineage for a third individual c are
also drawn. In this instance the lineages of a and c have the same ancestor in generation 0

and therefore they have the same type. If you know that two individuals have the same an-
cestor, you know that they have the same type. If they have don’t have the same ancestor,
the probability of having the same type depends on the probability of whether their ancest-
ors in first generation are of the same type. The precise computation is done step by step
in Exercise 3.3.3. The procedure above gives us a direct criterion to check whether there is
genetic diversity in the population or not, namely:

Criterion for genetic diversity

If all individuals in a generation have the same ancestor in the first generation, the
genetic diversity is lost.

In Exercise 3.3.3 we will compute step by step the probability that genetic diversity is lost
in a certain generation.
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(c) Determine the type of the
ancestors in generation 0

Figure 2.2.4. Procedure to check genetic diversity

2.2.4. Scaling limit
Suppose we want to compare two populations evolving according to the Wright-Fisher
model with different sizes. LetN1 denote the number of individuals in population 1 and
N2 denote the number of individuals in population 2. To compare the two populations it is
convenient to look at the fraction of red individuals, instead of the absolute number of red
individuals, i.e.

X̃1(t) =
X1(t)

N1
and (2.2.4)

X̃2(t) =
X2(t)

N2
. (2.2.5)

The Wright-Fisher model is often used to study the genetic composition of a population
of bacteria. In that case the number of individuals in the population is typically very large.
Also then it makes sense to look at X̃(t) = X(t)

N
. You can imagine that for a large population

it will take much longer for one of the two types to die out, then for a population with only
a few individuals. Therefore if you want to study a large population it makes sense to let
time pass by faster in order to see the population change. You can compare this to a grow-
ing plant. If you watch the plant, you will not see it grow. If you film the plant for a week
and speed up the video afterwards, you are able to see the plant grow. Therefore, for large
population withN individuals, we are interested in the quantity

X̄(t) =
X(Nt)

N
. (2.2.6)

So X̄(t) is the fraction of red individuals when time is speeded up by a factorN , the size of
the population. This means that a timestep which has before speeding up size 1, now has
size 1

N
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It turns out that whenN grows very large the process X̄(t) can be described by the follow-
ing differential equation

dX̄(t) =
√

X̄(t)(1− X̄(t))dW (t). (2.2.7)

Here dX̄(t) tells us how much the process changes when time is changed a little bit. W (t)

is random process called a Brownian motion that takes random values. A lot of mathem-
atics is needed to understand equation (2.2.7), but we are still able to grab some things.
Equation (2.2.7) tells us, that the fraction of red individuals change over time like a random
process changes over small times, this is dW (t), multiplied by a factor

√
X̄(t)(1− X̄(t)).

This implies that if there are only red individuals in the population soX(t) = 1, then√
X̄(t)(1− X̄(t)) = 0 and so the process does no longer change over time. The same holds

forX(t) = 0. We say that 0 and 1 are the fixed values of the differential equation. The pro-
cess X̄(t) is called the scaling limit.

2.2.5. Wright-Fisher model on the hierarchical lattice
The Wright-Fisher model can be extended in multiple ways. You can think for example
about mutations or selections of a fitter type or migration between different colonies. In
this section we would look at the last extension where migration takes place on the hier-
archical lattice, see Section 2.2 for the necessary background knowledge. The colonies are
then placed at the sites of the 0-layer of the hierarchical lattice. The hierarchical lattice is
used often in ecology because it orders the colonies in natural way. Denoting the site of a
colony by the sequence given in (1.3.1), we can interpret each colony as a house, all the
colonies with the same second entry form together a street, all colonies with the same third
entry form a neighbourhood, the neighbourhoods form cities, the cities form countries and
so on. The individuals can migrate between colonies. The migration is incorporated in the
Wright-Fisher model in the following way.

Migration in the Wright-Fisher model

At each timestep an individual at a site η chooses with probability a(η, ξ) an indi-
vidual from site ξ and adopts its type.

Recall the distance d(η, ξ) on the hierarchical lattice defined in (1.3.2). The probability
a(η, ξ) to migrate from site η ∈ ΩM to site ξ ∈ ΩM is defined as follows

a(η, ξ) = C
∑

k∈ΩM

k≥d(η,ξ)

1

Mk−1

1

Mk
, (2.2.8)

whereM is the order of the hierarchical lattice and C is a constant to make sure that∑
ξ∈ΩM

a(η, ξ) = 1. This migration probability should be interpreted as follows. With prob-
ability C

Mk−1 an individual chooses a space horizon, (i.e. house, street, neighbourhood,
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city, …) from which it subsequently picks a colony at random. Since a space horizon k con-
tainsMk colonies, the probability to pick at random the colony ξ from this space horizon is
exactly 1

Mk .
IfM is large 1

M
>> 1

M2 >> 1
M3 >> · · · , where the notation>>means that the term

on the left is much larger than the term on the right. Hence we see that migration in the
street happens far more often than migration in the neighbourhood, which in turn happens
far more often than migration in the city. To study how a street, a house or a city evolves we
study the so called blocks. The block of level k is defined as follows:

X [k]
η (t) =

1

Mk

∑
ξ∈Ωd

d(η,ξ)≤k

X̄η(M
kt), (2.2.9)

so it averages the fraction of red individuals in all single colonies within a certain space ho-
rizon, while time is speeded up by a factorMk. The time is speeded up to see the migration
occur between blocks of different sizes. This is called space time scaling. At this point it
is to difficult to analyse the dynamics of the Wright-Fisher model with migration in detail,
but the pictures below illustrate how you can look at different timescales to see the system
change at the corresponding space scale.

Figure 2.2.5. The hierarchical lattice ΩM at time 0. The dots indicate that there areM lineages
instead of three, but for clearness of the picture there are only three depicted. The purple colour

indicates there is a mixture between red and blue individuals.
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Figure 2.2.6. The hierarchical lattice ΩM at time t. The single colonies start their evolution, but
bigger blocks remain in there original state.

Figure 2.2.7. The hierarchical lattice ΩM at timeMt, the 1-blocks start evolving

Figure 2.2.8. The hierarchical lattice ΩM at timeM2t, the 2-blocks start evolving.
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On the Network Pages

In her article on the Network Pages, The seed bank, an unseen storage of genetic
diversity, Margriet Oomen goes deeper into the mysteries of evolution and genet-
ics. Have a look at networkpages.nl/the-seed-bank-an-unseen-storage-of-genetic-
diversity.
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CHAPTER 3

Exercises

This chapter contains exercises on the theory presented in  
chapters 1 and 2. 
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3.1. Exercises on probability theory

3.1.1. Conditional probabilities and expectations

A conditional probability is denoted by P(A|B), which corresponds to

the probability of A happening, given that B happens.

Let’s look at a few simple examples. We denote byX the random variable that represents
the number that you roll with a six-sided die.
(1) What is the probability that you roll a 6 with a six-sided die? In a formula: P(X = 6).
(2) What is the probability that you roll a 6, given that you roll at least a 4; P(X = 6|X ≥

4)?
(3) You can use the following formula to compute conditional probabilities:

P(A|B) =
P(A and B)

P(B)
. (3.1.1)

Check that this formula works by solving the second question again, but now with the
formula.

(4) Similarly to probabilities, we can also look at expectations. What is the expected
number you roll with a six-sided die? In formulas: E(X).

(5) What is the expected number that you roll, given that you roll at least a 4;
E(X|X ≥ 4)?

3.1.2. The exponential distribution

The exponential distribution is defined in the following way. Suppose thatX is exponen-
tially distributed with parameter λ. Then P(X < t) = 1− e−λt.
(1) Calculate P(X ≥ t).
(2) Calculate P(1 < X < 2).
(3) Calculate the expectation of the exponential distribution with the following formula:

E(X) =

∫ ∞

0

P(X ≥ t)dt.

(4) Use Equation (3.1.1) to prove the memoryless property of the exponential distribu-
tion:

P(X > t+ u|X > t) = P(X > u).
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3.2. Exercises on queueing theory

3.2.1. Mean queue length
We introduce ρ = λ/µ to make the calculations easier. In theM |M |1 queue we found that
the probability of having i jobs in the system, in equilibrium, equals

pi = (1− ρ)ρi.

(1) Of course, the sum of all these probabilities should sum up to 1. Prove that∑∞
i=0 pi = 1.

(2) We can calculate the mean queue length using these probabilities;

E(L) =
∞∑
i=0

ipi =

∞∑
i=0

i(1− ρ)ρi.

Calculate E(L).

3.2.2. Extension of the single-server queue
In the lecture we drew the transition diagram and calculated the equilibrium probabilities
of theM |M |1 queue, which is a system where 1 job can be served at a time. In this set of
questions, we will consider three extensions.
(1) TheM |M |c queue is an extension of this model, where up to c jobs can get service

simultaneously. Draw the transition diagram of theM |M |c queue.

Hint

Suppose two jobs are getting service at the same time. The rate at which
servers move from having 2 to 1 jobs, is equal to 2 · µ.

Calculate the equilibrium probabilities of theM |M |c queue.
(2) In theM |M |1|k queue, only one job receives service at a time. The k in the name

denotes that there are finitely many spots to wait in the queue. At any moment, there
can be at most k jobs in this system. Whenever a job arrives and the system is full,
it will be blocked and it will leave forever. Draw the transition diagram, calculate the
equilibrium probabilities, and find the blocking probability; the probability that an
arbitrary job will be blocked.

(3) TheM |M |c|k model is a mix of theM |M |1|k and theM |M |c. In this system there
are c servers, hence c jobs can receive service simultaneously, and at most k jobs can
reside in the queue. Can you find the transition diagram, equilibrium probabilities and
blocking probability?
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(5) What is the expected number that you roll, given that you roll at least a 4;
E(X|X ≥ 4)?

3.1.2. The exponential distribution

The exponential distribution is defined in the following way. Suppose thatX is exponen-
tially distributed with parameter λ. Then P(X < t) = 1− e−λt.
(1) Calculate P(X ≥ t).
(2) Calculate P(1 < X < 2).
(3) Calculate the expectation of the exponential distribution with the following formula:

E(X) =

∫ ∞

0

P(X ≥ t)dt.

(4) Use Equation (3.1.1) to prove the memoryless property of the exponential distribu-
tion:

P(X > t+ u|X > t) = P(X > u).
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3.2.3. Additional questions
(1) For the ‘random’ dispatching, we showed differential equations, involving the fraction

of servers that have i jobs in them at time t; fi(t). Can you explain what these formu-
las represent?

df0(t)

dt
= −λf0(t) + µf1(t)

and
dfi(t)

dt
= λ(fi−1(t)− fi(t)) + µ(fi+1(t)− fi(t)), i ≥ 1.

(2) For Power-of-2, we showed differential equations, involving the fraction of servers
that have at least i jobs in them at time t; gi(t). Can you explain what these formulas
represent?

dgi(t)

dt
= gi+1(t)− gi(t) + λ(gi−1(t)

2 − gi(t)
2), i ≥ 1.

(3) Can you think of a model where Join-the-Shortest-Queue is not smart to use?
(4) In the presentation, you saw several load balancing algorithms like Join-the-Shortest-

Queue and power-of-d. Can you think of your own load balancing algorithm?

3.3. Exercises on mathematical genetics

3.3.1. Wright-Fisher model
Consider the Wright-Fisher model from Section 2.2.1.
(1) Suppose that the population has 6 individuals and thatX(0) = 4, what is

P(X(1) = 3)? And what is E[X(1)]?
(2) Suppose that the population hasN individuals and we knowX0 = K for some

1 ≤ K ≤ N . Let 0 ≤ l ≤ N , can you show that P(X(1) = l) =
(
N
l

)
(K
N
)l(N−K

N
)N−l and

E[X(1)] = K?
(3) Note that E[X(1)] = X0, can you guess what E[X(n)] will be? (Hint: suppose you

knowXn−1, can you express the probability P(Xn = l) in terms ofXn−1? Try to com-
pute E[X(n)|X(n − 1)] =

∑N
l=0 l · P(X(n) = l|X(n − 1)), this is the expectation of

X(n) if you know whatX(n− 1) is.)
(4) Suppose there exists a generationm such thatXm = 0 orXm = N . What do we

know forXn with n > m, so the generations after generationm?

3.3.2. Hierarchical lattice Ω4

Answer the question 1 and 2 by drawing it in Figure 3.3.1.
(1) Give the sequence which indicates the positions of ξ and η.
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ξ η

Figure 3.3.1. Hierarchical lattice of order 4, Ω4.

Hint

We start enumerating from 0 and from left to right.

(2) Draw a block of all individuals at distance 1 from ξ and at distance 2 and at distance 3.
(3) What is the distance between ξ and η?

3.3.3. Loss of genetic diversity
In this question we compute what the probability is that two individuals are of the same
type. We consider the Wright-Fisher model withN individuals. The number of red individu-
als at time 0 is x0, 1 ≤ x0 ≤ N .
(1) Show that two individuals a and b chosen at random from the population at time 1

have the same parent equals 1
N
. Show that the same holds for the probability that

two individuals chosen at random from the population at time n have the same par-
ent in generation n− 1.

(2) From (1) it follows that the probability two individuals in generation n do not have
the same parent equals (1 − 1

N
). Show that the probability that two individuals in

generation n don’t have the same ancestor in generation 0 equals (1− 1
N
)n.

(3) We know that the initial number of red individualsX0 = x0. Show that the prob-
ability that the two individuals a and b in generation n are of a different type equals
(1− 1

N
)n 2x0(N−x0)

N(N−1)
.What is the probability that the two individuals a and b in genera-

tion n are of the same type?
(4) What happens with the probability computed in (3) if n gets larger?
(5) Suppose we know that all theN individuals in our population have the same ancestor.

What do you think is the probability that this ancestor is RED? You may assume that
each individual in the 0 generation is equally likely to be the ancestor of the popula-
tion.

(6) If we have a single colony do you think that one type always get extinct? Can you
think of extensions of the model such that types get less often extinct?
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CHAPTER 4

Solutions to  
the exercises

This chapter contains the solutions to some of the exercises  
in chapter 3. 
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4.1. Probability theory

4.1.1. Conditional probabilities and expectations
(1)

P(X = 6) = P(you get a 6 when rolling a six-sided die) = 1

6
,

since it is equally probable to obtain any of the six sides.
(2) This is a conditional probability. You don’t know exactly what the outcome is but you

know that it is at least 4. This means that the die number is either a 4 or a 5 or a 6.
Yes now you have three possible outcomes, given the condition, not six. All three are
equally probable, hence the desired probability is equal to

P(X = 6|X ≥ 4) =
1

3
.

(3)

P(X = 6|X ≥ 4) =
P({X = 6} and {X ≥ 4})

P(X ≥ 4)
=

1
6
1
2

=
1

3
. (4.1.1)

(4)

E(X) =

6∑
i=1

iP(X = i) =
1

6

6∑
i=1

= 3.

(5)

E(X|X ≥ 4) =

6∑
i=1

iP(X = i|X ≥ 4) = 5.

4.1.2. The exponential distribution
(1)

P(X ≥ t) = 1− P(X < t) = e−λt.

(2)
P(1 < X < 2) = P(X < 2)− P(X < 1) = e−λ − e−2λ.

(3)
E(X) =

1

λ
.

(4)
P(X > t+ u andX > t) = P(X > t+ u),

because ifX > t + u then it will also happen thatX > t. The rest follows by doing
one more computation.
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4.2. Queueing theory

4.2.1. Mean queue length
(1)

∞∑
i=0

pi =

∞∑
i=0

(1− ρ)ρi = (1− ρ)

∞∑
i=0

ρi.

Geometric sum

For the geometric sum we have that

n∑
i=0

ωi =
1− ωn+1

1− ω
.

Hence we have that
∞∑
i=0

ωi = lim
n→∞

n∑
i=0

ωi = lim
n→∞

(
1− ωn+1

1− ω

)
,

and hence for ω ∈ (0, 1)
∞∑
i=0

ωi =
1

1− ω
.

Using this result the answer follows.
(2)

∞∑
i=0

i(1− ρ)ρi =

∞∑
i=1

i(1− ρ)ρi = ρ(1− ρ)

∞∑
i=1

iρi−1

= ρ(1− ρ)

(
∞∑
i=0

ρi
)′

= ρ(1− ρ)

(
1

1− ρ

)′

=
ρ

1− ρ
.

4.2.2. Additional questions
(1) In order to understand these differential equations we have to see how the quantity

f0(t) changes in time. First of all a reminder, f0(t) represents the fraction of queues
with 0 customers. Hence this fraction becomes smaller when the number of queues
with no customers decreases, this happens only when a customer arrives to one of
these queues. Moreover, customers arrive to the system with rate λ. This is why the
term−λf0(t) appears on the right-hand side. Now it remains to see how f0(t) can be-
come larger, this happens when a customer departs from a queue with only one cus-
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tomer and the fraction of queues with one customer is equal to f1(t). Moreover, cus-
tomers are served with rate µ. This is why the term µf1(t) appears on the right-hand
side of the equation. Let’s move on to the equation for i ≥ 1. The same argument
holds but now we have two more scenarios. The fraction of queues with i customers
can increase also because a customer arrived to a queue with i− 1 customers, that is
why the term λfi−1(t) appears. And it can decrease because a customer in one of the
queues with i customers is served and leaves the queue, that is why the term−µfi(t)

appears.

4.3. Mathematical genetics

4.3.1. The Wright-Fischer model
(1) NoteX(1) is now distributed as Bin(6, 4

6
) and hence

P(X(1) = 3) =

(
6

3

)(
4

6

)3 (
2

6

)3

.

In this case P(Yi(1) = 1) = 4
6
Hence

E[X(1)] = E[
6∑

i=1

Yi(1)] =

6∑
i=1

E[Yi(1)] = 4.

Or you can use immediately that for a random variableX that is distributed Bin(n, p)

E[X] = n · p. So in our case E[X] = 6 · 4
6
= 4.

(2) In this caseX is Bin(N, K
N
) distributed, hence by the above rules P(X(1) = l) =(

N
l

)
(K
N
)l(N−K

N
)N−l and E[X1] = K.

(3)

P(X(n) = l|X(n− 1)) =

(
N

l

)(
X(n− 1)

N

)l (
X(n− 1)

N

)n−l

,

so we see thatX(n) is Bin(N, X(n−1)
N

) distributed. Hence E[X(n)|X(n− 1)] = X(n−
1), so note the value E[X(n)|X(n − 1)] depends on the valueX(n − 1) assumes.
Taking expectations once more we see

E[E[X(n)|X(n− 1)]] =

N∑
l=0

P(X(n− 1) = l) · E[X(n)|X(n− 1) = l]

=

N∑
l=0

P(X(n− 1) = l) · l = E[X(n− 1)].

Since the above result holds for all n, we see E[X(0)] = E[X(1)] = E[X(2)] = ... =

E[X(n)]. But we actually knew thatX(0) = K = E[X(1)]. Therefore we see that
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E[X(n)] = X(0) for all n, so the number of red individuals we expect in a certain
generation stays constant over time.

(4) IfX(m) = 0, then all the individuals are blue, hence all individuals will choose a blue
individual and therefore all children will be blue soX(m + 1) = 0. Therefore for all
n > mX(m+ 1) = 0. The same reasoning holds forX(m) = N .

4.3.2. Hierarchical lattice Ω4

(1) ξ = (1, 0, 0, 0, · · · ), η = (3, 3, 1, 0, · · · ). To find the answer, number in each layer the
branches of one node from left to right by {0, 1, 2, 3}.

(2) Draw a block of all individuals at distance 1 from ξ and at distance 2 and at distance 3.
(3) d(ξ, η) = 3, since they agree from the fourth coordinate onwards.

4.3.3. Loss of genetic diversity
(1) If we number the individuals at time 0 from 1 toN then

P(a descends from individual l) = 1

N

for all 1 ≤ l ≤ N . Similarly P(b descends form individual l) = 1
N

. Since a and b

choose there parent independently, P(a and b descends form individual l) =
(

1
N

)2.
Since the only requirement is that a and b descend from the same individual we have
P(a and bdescends form the same individual) =

∑N
l=0

(
1
N

)2
= 1

N
. Equivalently

one can argue that a can choose any parent. Then b has exactly to choose this parent,
which happen with probability 1

N
. Hence it follows that P(a and b have the same parent ) =

1
N
.

(2) To have not the same ancestor n generations back, the “parents” of a and b have
to choose n times a different ancestor, which each time happens with probability
(1− 1

N
). Hence the probability that two individuals in generation n have not the same

ancestor in generation 0 equals (1− 1
N
)n. Note that as soon as in some generation the

“parents” of a and b choose the same line, the ancestral path will be the same from
this point on, backwards in time. See the ancestral lines of b and c, in Figure 2.2.4b.

(3) We define two events A and B. Let

A = {a and b have same ancestor in generation 0}

and
B = {a and b have different ancestor in generation 0}.

Then P(A or B) = 1 and from part B we know that P(B) = (1 − 1
N
)n. We also know

that
P(a and b are of different types|A) = 0,
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since if a and b have the same ancestor, they inherit both the type of this ancestor
and therefore a and b are of the same type. And P(a and b are of different types|B) =

2 · x0
N

· N−x0
N

, since the probability that two randomly drawn individuals at time 0 are
of different type is the same as drawing two balls without replacement from an urn
with x0 red balls andN − x0 blue balls and having either the outcome red, blue or the
outcome blue, red.

P(a and b are of different types) = P(a and b are of different types|A)P(A)

+P(a and b are of different types|B)P(B)

= P(a and b are of different types|B)P(B)

=
2x0(N − x0)

N(N − 1)
· (1− 1

N
)n

(4) If n gets larger, (1− 1
N
)n tends to 0. Since 0 ≤ 2x0(N−x0)

N(N−1)
≤ 1 is a constant independ-

ent of n, P(a and b are of different types) tends to 0.
(5) Since each individual in the population is equally likely to be the ancestor, the prob-

ability that this ancestor is red equals x0
N
.

(6) Indeed one of the types gets extinct. To argue this answer you could reason that
the amount of red or blue individuals only stops changing when every one is red or
blue. Since in each timestep this could happen with some positive probability, this
will happen after long enough time. In each evolution step of the population we have
a probability of ( 1

N
)N−1 that all the individuals choose the same parent. Therefore

you know that the probability that every one has the same color at the next time is
at least ( 1

N
)N−1 > 0, since also choosing different parents with the same color can

result in a loss of genetic diversity. Also in part C we saw that the probability for two
randomly drawn individuals to be of different type tends closer to 0 if we look at lar-
ger times. Once this probability becomes 0 we are sure all pairs are of the same type.
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