
5NETWORKS GOES TO SCHOOL

INTRODUCTION
Transportation, traffic, communication and energy networks form the backbone of our mod-

ern society. To deal with the uncertainty, variation, unpredictability, size and complexity

inherent in these networks, we need to develop radically new ways of thinking. The ulti-

mate goal is to build self-organising and intelligent networks. The NWO-funded Gravitation

programme NETWORKS started in the Summer of 2014 and covers a broad range of topics

dealing with stochastic and algorithmic aspects of networks.

In March 2022 the fourth “NETWORKS goes to school” event was organised. The aim of the

event is to provide secondary education students and teachers a first mathematical intro-

duction on network science. This book collects the material realised for the “NETWORKS

goes to school” event.

The content of this book is intended for secondary education students and teachers, and

aims to provide a first mathematical introduction on network science. In Chapter 1 all the

necessary background material that is required for Chapter 2 is presented. In Section 2.1,

we introduce the concept of computational complexity and we show how to analyse the

complexity of an algorithm. In Section 2.2 we discuss one of the most fascinating questions

in modern mathematics, whether P 6=NP, and we show a concrete example of a so-called

NP-complete problem from graph theory. In Section 2.3.1 we discuss the First Mover Ad-

vantage, a phenomenon occurring in sports events, for example in the penalty series when a

football match ends with a draw. We show that, in the sudden death phase, when one team

always shoots first they have an advantage against the second team. An alternative method

to make sudden death more honest is also shown. Chapter 3 contains exercises on these

two topics and in Chapter 4 we provide the corresponding solutions. Chapters 2, 3 and 4

were written with the help of dr. Giulia Bernardini (University of Trieste) and Roel Lampers

(Eindhoven University of Technology).

For more information and the books of the first two masterclasses “NETWORKS goes to

school”, please visit www.networkpages.nl/category/networks-goes-to-school/

On behalf of the NETWORKS programme,

the organising committee of “NETWORKS goes to school”

Jan-Pieter Dorsman (University of Amsterdam)

Nicos Starreveld (University of Amsterdam)

6 NETWORKS GOES TO SCHOOL

7NETWORKS GOES TO SCHOOL

8 NETWORKS GOES TO SCHOOL

Contents

1.1 Basic notation . 9

1.2 Algorithms . 9

1.2.1 Describing algorithms: pseudocode . 10

1.3 Graph theory . 11

1.3.1 Eulerian path . 12

1.3.2 Hamiltonian path . 12

1.4 About models, sums and products . 13

1.4.1 Mathematical Models . 14

1.4.2 On sums and products . 14

2.1 Computational Complexity - How complex is an algorithm? 19

2.1.1 How do we Analyse the Running Time of Algorithms? 19

2.1.2 TheO-Notation . 21

2.1.3 An Example: Searching on a Sorted Data 21

2.2 P vs NP . 24

2.2.1 An Example: Hamiltonian Path . 25

2.3 Mathematics to make sports more honest . 28

2.3.1 Modelling First Mover Advantage . 28

2.3.2 Sudden death . 29

2.3.3 Looking for fair sequences . 32

3.1 Exercises on algorithms . 39

3.2 Exercises on graph theory . 40

3.2.1 Finding Eulerian and Hamiltonian paths 40

3.3 Exercises on algorithmic complexity . 40

3.4 Exercises on sums and products . 41

3.5 Exercises First Mover Advantage . 41

4.1 Algorithms . 45

4.2 Algorithmic complexity . 45

4.3 First Mover Advantage . 45

9NETWORKS GOES TO SCHOOL

1.1. Basic notation

We start by introducing some notation we will use in the sequel:

(1) N for the set of natural numbers, that is N = {1, 2, 3, · · · };
(2) Z for the set of integer numbers, that is Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }.
(3) R for the set of real numbers, that is all integer numbers and all the decimal numbers

between them.

(4) We will use the symbol≤ when we want to say “less or equal to”. For example, a ≤ b

means that a is less or equal to b.

(5) We will often work with subsets of the natural numbers. For a set I, we write Ic or

N/I for it’s complement. For example, if I = {2, 4, 6, . . .} contains all even numbers,
then Ic contains all odd numbers.

1.2. Algorithms

Mobile phones, ATMs, modern cars, televisions, e-readers: none of them would work without

software. The heart of software is formed by algorithms: step-by-step procedures to per-

form given tasks. Algorithms can be executed by computers, but also by persons.

Algorithm

An algorithm is a step-by-step procedure to perform a given task. Algorithms can

be executed by computers, but also by persons.

For instance, suppose you hold twenty cards in your hand, each with a different number on

them. Your task is to create a stack containing the cards in sorted order, with the lowest

numbered card at the bottom and the highest numbered card on top of the stack. A simple

algorithm for this task is the following. Go over the cards in your hand one by one, to find

the lowest numbered card. Put this card as the bottom card on the stack. Then go over the

remaining cards in your hand, to find the next lowest-numbered card, and put it on top of

the previously selected card. Repeat this procedure until all cards are on the stack.

In order for an algorithm to be executed by a computer it has to be implemented in com-

puter code, typically in a computer language like Java or C++. When the description of the

algorithm is sufficiently precise, implementing it is not very difficult for a skilled program-

mer. Thus, when you want a certain task to be performed by computer the challenge lies in

coming up with a good algorithm.

10 NETWORKS GOES TO SCHOOL

1.2.1. Describing algorithms: pseudocode
As mentioned before an algorithm is a precisely described step-by-step plan to perform a

certain task. Generally an algorithm will eventually be converted into software to be to be

run on a computer. It is therefore important that the description of the algorithm is precise

enough so that a programmer can convert it into the desired programming language. We

will therefore describe algorithms in pseudocode.

Let’s look at an example. Suppose we need an algorithm that searches for a given number

in a large set of numbers. This large set of numbers is stored in a so-called array: a row of

numbers, just like in a table. The numbers are numbered from 1 up to n. If we call the array

A, then we denote the first number with A[1], the second number with A[2], and so on. So

the i-th number is in A[i]; the value i becomes the index of the number called. The whole

set of numbers, A[1], . . . , A[n] is simply written as A[1 . . . n].

Index

The index of an element in an array is the position it holds in the array from left to

right.

To see if the number q occurs in the given set of numbers, we can now simply run through

the array and at each number check if it is equal to q. If YES, then we can stop, otherwise

we will continue to the next number. If we checked all numbers without finding q, then we

can conclude that q does not occur in the given set of numbers.

To the array A is checked by using an auxiliary variable. This variable, which we call j here,

gives the index of the number we are looking at at that moment. Iterating through the array

happens so by increasing j each time by 1. Assigning a value to a variable becomes notated

as with the symbol←. For example, if we want to give j the value 1, then we write j ← 1

(pronounced: “j becomes 1”), and if we want to increase j by 1 we write j ← j + 1 (pro-

nounce: “j becomes j + 1”). In pseudocode, our search algorithm now looks like this.

Algorithm 1 Linear Search

1: INPUT: An array A[1, . . . , n] of numbers and a number q.
2: OUTPUT: An index i such that A[i] = q; or FAIL if no such index exists.
3: j ← 1;
4: while j ≤ n do
5: if A[j] = q then
6: return j;
7: else

8: j ← j + 1;

9: if j = n+ 1 then return : FAIL;

11NETWORKS GOES TO SCHOOL

The input of the algorithm is indicated in parentheses, just like a math function: just as you

write f(x) for a function f where you put a number x, so you write LinearSearch(A, q) for a

LinearSearch-algorithm where you put an array A and a number q as inputs. Because it’s

not immediately clear what the input represents and what the result of the algorithm should

be, this is indicated at the beginning of the algorithm.

The description of the algorithm itself consists of simple commands (e.g. “i ← i + 1” or

“return i”) and tests (e.g. “i ≤ n”). Moreover are there repetition commands of the form

while: some condition

do:. . .

or selection commands like

if: some condition

then:. . .

else:. . .

If nothing needs to be done in the else part, this part is omitted.

1.3. Graph theory
An intuitive definition of a network would be a ‘collection of objects that are interconnected

in some way’. Think for example of a collection of people, who can be interconnected by

friendships; or a collection of cities, which can be interconnected by roads. To make this

idea precise, we turn to graph theory.

Graph

A graph is a pairG = (V,E), where

• V is the set of nodes or vertices;

• E is the set of edges, connecting the nodes.

Typically, we number the nodes from {1, 2, 3, . . . , }. We denote an edge between two nodes
i and j by {i, j}. To define a graph, we can write down the sets V and E.

EXAMPLE 1.3.1. Consider

V = {1, 2, 3, 4, 5, 6}, E = {{1, 2}, {1, 5}, {2, 3}, {2, 5}, {3, 4}, {4, 5}, {4, 6}}.

ThenG = (V,E) is a graph with six nodes and seven edges.

It may be very useful to have a graphical representation of a graph. We do this by typically

drawing nodes as a circle with a label in it, and edges as a line between nodes. However,

12 NETWORKS GOES TO SCHOOL

you are free to choose any representation you may like! In fact, the location of the nodes is

also arbitrary, it only matters the way in which the edges connect the nodes together.

EXAMPLE 1.3.1 (Continued). In Figure 1.3.1 we see two ways in which the graphG can be

drawn.

6

4

5 1

23

2 3

5 4 6

1

Figure 1.3.1. Two different representations of the graph in Example 1.3.1.

In the following two sections we will discuss two problems from graph theory, the first one

is finding an Euleriean path and the second one is finding a Hamiltonian path. These two

problems may seem similar to each other at first sight, but later on you will see that one is

very easy to solve while the other is very difficult!

1.3.1. Eulerian path
In the Eulerian path problem we want, given a graphG(V,E), to find out whether there is

a way of visiting all the edges ofG exactly once with an unbroken path. In such a path ver-

tices may be visited more than once.

EXAMPLE 1.3.1. In Figure 1.3.2 below you can see an Eulerian path in a graph on 6 ver-

tices.

You can thus see that an Eulerian path depends on the starting point. For example, if you

start from vertex 4 in the graph above, you will quickly notice that it is not possible to find a

path using all edges exactly once! In Section 3.1 you will find more exercises to work on.

1.3.2. Hamiltonian path
In the Hamiltonian path problem we want, given a graphG(V,E), to find out whether there

is a way of visiting all the vertices ofG exactly once with an unbroken path. The difference

with the Eulerian path problem is that now not all edges are necessarily used, moreover in

the Eulerian path problem some vertices could be used twice.

13NETWORKS GOES TO SCHOOL

6

4

5 1

23

6

4

5 1

23

Figure 1.3.2. (Left) A graph with 6 vertices. (Right) An Eulerian path in the graph starting from

vertex 6.

6

4

5 1

23

6

4

5 1

23

Figure 1.3.3. (Left) A graph with 6 vertices. (Right) A Hamiltonian path in the graph starting

from vertex 6.

EXAMPLE 1.3.1. In Figure 1.3.3 below you can see a Hamiltonian path in a graph on 6 ver-

tices.

A Hamiltonian path thus also depends on the starting vertex. For example, if you start from

vertex 4 in the graph above you will quickly notice that it is not possible to find a path visit-

ing all vertices exactly once! In order to visit vertex 6 the path needs to visit vertex 4 twice.

In Section 3.1 you will find more exercises to work on.

1.4. About models, sums and products

In this section we discuss some concepts will be needed later in Section 2.3 on the math-

ematics behind penalty shooting. In this section we will discuss what is a mathematical

model, and how to compactly write down sums and products.

14 NETWORKS GOES TO SCHOOL

1.4.1. Mathematical Models
To study any kind of system or real-life situation we first have to construct a mathematical

model. To illustrate what a mathematical model is, you can think of a toy car of a Ferrari

(which is also called amodel car). Such a toy car is not precisely like the Ferrari, since it

does not contain a working engine, is made of different material, is much smaller, and so

on. However, it does give you a good idea of the shape, how it looks when it is driving, and

how it compares to other toy cars. As another example, architects make models of their

buildings on a small scale (also called a scale model) to study how they would look, how

much light will enter the building, how much material is needed, and so on. In a similar way,

mathematical models describe a real-life phenomenon, using mathematical concepts and

language. The model will not resemble reality perfectly, but can be used to learn from.

1.4.2. On sums and products
Mathematicians always want to write down mathematics as compactly as possible. But the

notation used should also be clear and representative of what it describes. Typical notation

you encounter when doing mathematics involves:

(1) the symbol used for summation:
∑
;

(2) the symbol used for a product:
∏
.

Below we show how these symbols are used to describe a sum and a product respectively.

Suppose you want to use the summation symbol to describe the sum 1 + 2 + 3 + 4 + 5 + 6,

then you can write this down compactly as

6∑
k=1

k = 1 + 2 + 3 + 4 + 5 + 6 = 21.

The advantage of this notation is that you can write down large sums very compactly. For

example, if you want the sum of the first 100 natural numbers, instead of only up to 6, then

you can write this down as
100∑
k=1

k.

You can imagine that similar notation can be used also for products of factors. Suppose you

want to use the product symbol to describe the product 3 · 4 · 5 · 6, then you can write this
down compactly as

6∏
k=3

k = 3 · 4 · 5 · 6 = 360.

By playing with the value at which the sum (or product) starts or ends you see that you rep-

resent many sums or products using this notation. The general notation is the following:

15NETWORKS GOES TO SCHOOL

n∑
k=m

ak and

r∏
k=`

bk,

where k is the index of summation or of the product; ak, bk are indexed variables represent-

ing each term of the sum and each factor of the product;m, ` are the lower bounds of sum-

mation and of the product, and n, r are the upper bounds of summation and of the product.

In all the expressions above, either of summations or products, you can remark that the

index k in every step increases by one, it starts from a numberm, then takes the valuem +

1,m + 2 until it reaches the number n. It is also possible to choose the indices from some

set of values. Say for example that you want to compute the sum of the squares of all even

numbers greater or equal to 4 and less or equal to 20. You can define the set of indexes you

want to sum over, in this case

I = {N ∈ N : 4 ≤ N ≤ 20 andN is even} = {4, 6, 8, 10, 12, 14, 16, 18, 20}.

Then the desired sum can be written as∑
k∈I

k2 = 16 + 36 + 64 + 100 + 144 + 296 + 324 + 400 = 1380.

This sum could also be written compactly as follows∑
k∈I

k2 =
∑

4≤k≤20, k even

k2.

Similar rules hold also for products.

We have paid so much attention on writing out sums and products in order to get used with

this notation. Being skilful with the notation and being able to compactly write down math-

ematics is a very important skill that will turn out to be important in Section 2.3.1.

In what follows we present an important concept in arithmetic, that of a geometric progres-

sion and the geometric sum.

Geometric Progression

A geometric progression, also known as a geometric sequence, is a sequence of

non-zero numbers where each term after the first is found by multiplying the pre-

vious one by a fixed, non-zero number, called the common ratio. For example, the

sequence 2, 6, 18, 54, . . . is a geometric progression with common ratio 3. Similarly

10, 5, 2.5, 1.25, . . . is a geometric sequence with common ratio 0.5. If the common

ratio is denoted by ω, and the first number in the progression by A0, then the whole

progression can be written as

A0, A0 · ω,A0 · ω2, A0 · ω3,

16 NETWORKS GOES TO SCHOOL

Suppose we want to sum the first n terms of a geometric progression with parameters

A0, ω. Then we are looking for the following sum

n∑
k=0

A0 · ωk = A0 +A0 · ω +A0 · ω2 + . . .+A0 · ωn = A0 ·
n∑

k=0

ωk.

We call such a sum a geometric sum. After some (non-standard) computations we can find

that

n∑
k=0

ωk =
1− ωn+1

1− ω
. (1.4.1)

Try yourselves to prove this result, it is fun! This compact notation of sums and products

allows us to consider sums and products with infinitely many terms and factors! And the

amazing thing, very often such infinite sums and products are finite! Lets see an example

using the geometric progression above. It is simple to see that for ω > 1 the infinite sum

n∑
k=0

ωk

cannot be finite, simply because you keep adding growing numbers to each other. For ω = 1

the same, you just add one infinitely many times. But what happens for ω < 1? In this case

this infinite sum is always finite! We can see this from the expression on the right hand side

of (1.4.1). The term ωn+1 will get smaller and smaller as n grows larger, in the end it will

converge to zero. This means that

∞∑
k=0

ωk =
1

1− ω
, for ω > 1. (1.4.2)

This infinite sum appears often in mathematics and will be used in Chapter 2 later when we

will study the First Mover Advantage! Being skilful with summations will allow you to grasp

everything about the First Mover Advantage in Section 2.3.1.

Acknowledgements

Section 1.2 of this chapter is heavily based on Chapter 1 from the module “Algor-

itmiek” written by Prof. Mark de Berg from the Eindhoven University of Technology

(win.tue.nl/wiskunded/vakken.shtml#beslissen).

17NETWORKS GOES TO SCHOOL

18 NETWORKS GOES TO SCHOOL

19NETWORKS GOES TO SCHOOL

2.1. Computational Complexity - How complex is an algorithm?

Often there are different strategies to perform a given task - or “to solve a given problem”,

as it is usually called - leading to different algorithms. These algorithms typically differ in

efficiency: some are fast while others are slow. Of course the actual time a computer needs

to solve a problem depends on the speed of the computer. Moreover, it depends on the size

of the problem at hand: sorting a thousand numbers will take less time than sorting a mil-

lion numbers. It is nevertheless possible to compare the efficiency of algorithms in a math-

ematical way. To this end the number of “steps” of the algorithm is analyzed as a function of

the number of input elements.

Algorithmic Complexity

Algorithms typically differ in efficiency: some are fast while others are slow. It is

possible to compare the efficiency of algorithms in a mathematical way. To this end

the number of “steps” of the algorithm is analyzed as a function of the number of

input elements.

2.1.1. How do we Analyse the Running Time of Algorithms?

The most common way to analyse the running time of an algorithm is the so-called worst-

case analysis. As the name suggests, this is the longest running time for any input of size

n: this means that, whenever we will analyse the time complexity of an algorithm, we will

be very pessimistic and assume that our input is the worse possible. The reason for this

strategy is to provide strong guarantees that the algorithm will never take any longer, not

even in the most unfortunate cases... that, for some algorithms, occur quite often.

Some simplifying abstractions are luckily allowed when analysing algorithms. In fact, we

do not need to determine the exact computational cost of each step of an algorithm, but we

are rather interested in its order of growth. This means, intuitively speaking, that we are

e.g. required to determine if the cost of a certain procedure is some constant c, but we do

not need to compute the actual value of c.

Likewise, if we know that the cost of a task can be expressed as a polynomial in the size of

the input, e.g., cost(input of size n) = an2 + bn + c, we are only interested in its highest-

order term (in this case an2) and we can even ignore this term’s constant coefficient: we will

just say that the cost of this task is quadratic. This is because, for large enough inputs, the

multiplicative constants and the terms of lower order are dominated by the effects of the

highest-order term; and we are only concerned with large inputs, as this is when things can

go sideways if an algorithm is not efficient enough.

20 NETWORKS GOES TO SCHOOL

Order of growth

if we know that the cost of a task can be expressed as a second order polynomial in

the size of the input, e.g., cost(input of size n) = an2 + bn + c, we will say that the

cost of this task is quadratic. If the cost of the task can be expressed as a first order

polynomial in the size of the input, e.g., cost(input of size n) = dn + e, we will say

that the cost of this task is linear.

Let us do a bit of algebra to understand why this is all that matters. Suppose you have an in-

credibly super-fast computer S, which can execute 10 billion (1010) instructions per second,

and a more modest computerM , which can execute 10million (107) instructions per second:

thus computer S is 1000 times faster than computerM .

Now suppose you want to solve some task for which you have two possible algorithms: Al-

gorithm 1 requires 2n2 (quadratic) instructions for an input of size n, while Algorithm 2 re-

quires 120n (linear) instructions. You run the quadratic Algorithm 1 on the super-fast com-

puter S, and the linear-time Algorithm 2 on computerM , both for the same large input of

size n = 107 (10 millions). The super-fast computer S will take

2 · (107)2 instructions
1010 instructions/second

= 20000 seconds;

while the modest computerM will take

120 · 107 instructions
107 instructions/second

= 120 seconds.

So an incredibly fast computer takes more than 5.5 hours to solve a task that a 1000 times

slower computer can solve in 2 minutes, just because the slower computer uses a linear-

time algorithm in place of a quadratic one!

Notice that the multiplicative constants play a very marginal role here: even if the linear-

time algorithm had a multiplicative constant of 1200 instead of 120, the slower computer

could solve the task in 20minutes, still way faster than the 5.5 hours required by the fast

computer. Lower-order terms would also not change the results significantly, as they could

only add a bunch of seconds or milliseconds to each algorithm (you can try to do the math

yourself).

These concepts will be made more precise in the next section, in which we introduce the

mathematical notation we use for this analysis. The example in Section 2.1.3 will also be

helpful in understanding and clarifying these matters.

21NETWORKS GOES TO SCHOOL

2.1.2. TheO-Notation

We are interested in studying how the running time of an algorithm increases with the size

of the input in the limit, that is, when the size of the input grows unbounded. The asymp-

totic notation we are going to use is defined in terms of functions from N to N. Although this
notation is primarily used to describe the running times of algorithms, it can be applied as

well to describe other aspect of algorithms (for example the amount of space they require)

or even to functions that have nothing to do with algorithms.

We say that a function f(n) is “big-oh” of another function g(n), and we write f(n) = O(g(n)),
if there exist a positive constant c and a natural number n0 such that f(n) ≤ c · g(n) for all
n ≥ n0. TheO-notation is used to give an upper bound on a function, to within a constant
factor: O(g(n)) actually denotes the whole set of functions that are asymptotically smaller
or equal to g(n) up to constant factors. For example, any function an + b with a > 0 is in

O(n). In fact, this is true if there exist a constant c and an n0 such that

cn ≥ an+ b, ∀n ≥ n0.

If we take, for example, c = 2a and n0 = 2|b|/a, you can verify that the inequality is always
satisfied for n ≥ n0. Of course there are other possible choices for c and n0, but this is

not important: the only important thing is that some values for c and n0 exist. It is handy to

know that, in general, any polynomial P (n) = adn
d + ad−1n

d−1 + . . . + a0 of degree d with

ad > 0 is inO(nd), as well as any polynomial of degree d′ < d. In particular, any constant

function is inO(1).

TheO-notation is extremely useful in the analysis of the running time of algorithms be-
cause, by bounding the function of its cost from above, it offers guarantees on the behaviour

of the algorithm for arbitrarily large inputs, which is precisely our goal. In the next section

we will analyse the time complexity of different algorithms that solve a concrete problem.

Bounding the complexity of an algorithm

A bound of the function of the cost of algorithm from above offers guarantees on the

behaviour of the algorithm for arbitrarily large inputs.

2.1.3. An Example: Searching on a Sorted Data

In this section we consider a problem similar to the one discussed before in Section 1.2.1.

In Section 1.2.1 we presented a Linear Search algorithm (Algorithm 1) which could find an

element q in a given set of numbers. In this section we consider a slightly different problem.

We consider the following problem: you have a sorted sequence of n items and you want to

search for a certain item x in this sequence. Real-life examples may be searching for a book

22 NETWORKS GOES TO SCHOOL

in a library where the books are sorted in increasing lexicographical order, or searching for a

name in an address book, or a registration number in a sorted list.

The first strategy that comes to mind is to simply scan the sequence until either the desired

item is found or the search fails, if the item is not part of the sequence. A pseudocode for

this simple algorithm is as follows.

Algorithm 2 Exhaustive Search

1: INPUT: A sorted sequence s = s[1]s[2] . . . s[n] of items from a setX and an

item x ∈ X.
2: OUTPUT: An index i ∈ [1, n] such that s[i] = x; or FAIL if no such index exists.
3: i← 1;
4: while i ≤ n do
5: if s[i] = x then
6: return : i;
7: else

8: i← i+ 1;

9: if i = n+ 1 then return : FAIL;

What is the running time of this algorithm? The instructions of Line 3 (initialise index i to

1), Line 4 (check whether the index is still at most n), Line 5 (compare x with the item at

position i), Lines 6 and 9 (return the index or FAIL if the item was not found) and Line 8 (in-

crease index i by 1) require a constant time c1, c2, c3, c4, c5, respectively.

How many times do we execute the loop of Lines 4-8? If we find x at position j, we execute

it j times, each requiring constant time. Thus the cost of the algorithm is given by c1+j(c2+

c3 + c5) + c4. The worst-case scenario is when x is either the last element of s or it is not in

the sequence, because in this case we execute the loop n times. Since we are performing

a worst-case analysis, and since we ignore the values of the constants, the running time of

this algorithm is inO(n).

Can we design a more efficient algorithm? Notice that we have not used at all the inform-

ation that our sequence s is sorted: the same algorithm with the same running time would

also work on an unsorted sequence. Remember that Algorithm 1 in Section 1.2.1 had ex-

actly the same structure as Algorithm 2.

The algorithm we describe next uses the so-called divide and conquer technique to exploit

the fact that the items of the sequence are sorted and achieve a much better running time.

What does Algorithm 3 do? The first time it executes the while loop, mid is the middle pos-
ition of the sequence (Line 5). The item at this position is compared with x: if we are lucky

and they are equal, it means we have found x and we return its position mid.

23NETWORKS GOES TO SCHOOL

Algorithm 3 Binary Search

1: INPUT: A sorted sequence s = s[1]s[2] . . . s[n] of items from a setX and an

item x ∈ X.
2: OUTPUT: An index i ∈ [1, n] such that s[i] = x; or FAIL if no such index exists.
3: start← 1, end← n;
4: while start ≤ end do
5: mid← b(start + end)/2c;
6: if s[mid] = x then
7: return : mid;
8: else if s[mid] < x then
9: start← mid + 1;
10: else if s[mid] > x then
11: end← mid− 1;

12: return : FAIL;

Otherwise, if x is greater than the element in the middle, it means that it should be in the

second half of the sequence, because the sequence is ordered! This is the crux that makes

this algorithm faster!

This is why, at Line 9, we set start to be the position immediately to the right of mid: be-
cause that is the smallest position where we could find x. The symmetric situation is when

x is smaller than the middle element: in this case it could only be found in the first half of

the sequence and therefore we set end to be the position to its left (Line 11).

In both cases, the next time the loop is executed it will repeat the same procedure in the

half of the sequence where x could be found. The instructions in the loop are repeated until

either x has been found or end becomes smaller than start, which only happens if x is not in
the sequence (you can easily verify that): in this case, we return FAIL (Line 12).

The reason why this strategy is intuitively more efficient than Algorithm 2 is that we never

check all the elements in the sequence: in fact, at each iteration we completely disregard

half of the remaining elements, and we will never need to check them!

Let us now analyze the asymptotic running time of Binary Search in the worst case. The

worst case is when x is not in the sequence, and thus we have to execute the while loop

until start = end. How many times do we execute it in this case?

To find it out, let us focus on the number of elements between start and end at each itera-
tion. At the first iteration they are all the elements of s, thus they are n. At the second iter-

ation they are n/2, because we only focus on one half of the sequence; at the third iteration

they are half of half, thus n/4 = n/22... and so on. In general, at iteration i we have n/2i−1

elements. At the last iteration we know that we have just one element, because start = end.

24 NETWORKS GOES TO SCHOOL

Thus we have

1 = n/2last−1 =⇒ 2last−1 = n =⇒ last = log2(n) + 1.

We found out that the loop is executed log2(n) + 1 times in the worst case! Since each in-

struction in the loop requires a constant time, and since we ignore these constants, we con-

clude that the running time of binary search is inO(log2(n)). By doing Exercise 11 you will
realise yourself what a great difference there is between anO(log2(n))-time algorithm and

anO(n)-time algorithm!

2.2. P vs NP

Both Algorithms 2 and 3 of the previous section have a polynomial running time. In general,

a polynomial-time algorithm has a worst-case running time ofO(nk) for some constant k >

0.

Polynomial time algorithms

We say that an algorithm runs in polynomial time if the function of the cost of al-

gorithm given the input n has a worst-case running time ofO(nk) for some constant

k > 0.

An important question that arises is the following. Does there always exist a polynomial-

time algorithm for solving any problem? The answer is no, and we will see an example of

problem for which no polynomial-time algorithm is known shortly.

We call the class of problems for which we know at least one algorithm with polynomial

worst-case running time P. The problems in P are commonly regarded as easy problems,

while we consider hard the problems for which no polynomial-time algorithm has been dis-

covered yet.

There is an interesting class of problems, called the “NP-complete” problems, for which

no polynomial-time algorithm has been discovered yet, but for which no proof that such an

algorithm cannot exist has been found either. We say that a problem is in NP if it is verifiable

in polynomial time. This means that, if someone gives us an alleged solution to the problem

(also called a certificate), we are able to verify whether this is an actual solution or not in

polynomial time.

Clearly this is true for all the problems in P (for which we can even produce a solution in

polynomial time), so we know that P ⊆ NP. Whether or not P 6= NP, though, is an open

question since 1971, when it was first posed: there is even a million-dollar prize for who-

ever can prove one of the two options! Deep down, most computer scientists think that

P 6= NP is the most reasonable hypothesis (...maybe we think that we are so clever that,

25NETWORKS GOES TO SCHOOL

Figure 2.2.1. A graph with no Hamiltonian paths (left) and a graph with an Hamiltonian path

(right).

if a polynomial-time algorithm for those problems existed, we would have found it by now),

but it is surprising how several problems in NP for which no polynomial-time algorithm is

known are apparently very similar to problems in P.

An example is the following: given a graphG(V,E) (see Section 1.3), we want to find out

whether

(a) there is a way of visiting all the edges ofG exactly once with an unbroken path (an

Eulerian path thus), and

(b) there is a way of visiting all the vertices ofG exactly once with an unbroken path (a

Hamiltonian path thus).

The two problems seem very similar, right? However, while there is an algorithm that solves

problem (a) for a graph withm edges inO(m) time (and thus problem (a) is known to be in

P), no polynomial-time algorithm is known for problem (b). We will discuss the Hamiltonian

path problem in detail in the next section.

2.2.1. An Example: Hamiltonian Path
Let us start by refreshing the Hamiltonian Path problem from Section 1.3.2 and discuss it a

bit more formally.

In input we are given a graphG(V,E) with n vertices andm edges; the output is either YES

or NO, depending on whether or not there exists a continuous path inG that touches each

of its vertices exactly once. A certificate for Hamiltonian Path is a sequence v1v2 . . . vn of n

vertices ofG, and it is a valid solution if and only if

(i) vi 6= vj for any two distinct i, j ∈ [1, n] and 2

(ii) there is an edge between any two consecutive vertices in the sequence, that is, {vi, vi+1} ∈
E for all i ∈ [1, n− 1].

Inspect Fig. 2.2.1. The vertex set of the graph on the right is V = {α, β, γ, δ, ε, η}; its edge
set is E = {{α, β}, {α, γ}, {β, δ}, {γ, δ}, {η, δ}, {η, ε}, {ε, δ}}. A Hamiltonian path in the
graph is highlighted in red and it is given by the sequence of vertices ηεδβαγ: indeed, each

vertex appears exactly once in the sequence, and there is an edge for each pair of consecut-

ive vertices. The graph on the left has no Hamiltonian path: in fact, you can easily see that it

26 NETWORKS GOES TO SCHOOL

is not possible to visit all vertices without traversing e or g at least twice.

The Hamiltonian Path problem is in NP. To prove it, it suffices to give a polynomial-time

algorithm that, given a sequence v1v2 . . . vn of n vertices of a graph, checks whether it cor-

responds to an Hamiltonian path or not. A possible algorithm is the following, that we call

VerifyHP.

First read the sequence from left to right. When we read vertex vi, we mark it as visited

in the graph. If we read a vertex that is already marked as visited, we know that it is not a

Hamiltonian path, thus we can stop. Otherwise, if we read the whole sequence and no ver-

tex was visited twice, we proceed to check if each pair of consecutive vertices corresponds

to an edge of the graph.

To do so, we start again from the beginning of the sequence, we read the first two vertices

v1, v2 and we check if {v1, v2} ∈ E. If so, we discard v1, read the next vertex v3 and check

if {v2, v3} ∈ E. We proceed like this until either we find a pair that is not an edge, and thus

the sequence does not give a Hamiltonian Path, or we arrive at the end of the sequence, and

thus the sequence corresponds to a Hamiltonian path.

Exercise 12 asks you to decide what is the worst-case running time of VerifyHP, to confirm

that it always runs in polynomial time and thus that the Hamiltonian Path problem is in NP.

Algorithm VerifyHP can be used to find a solution to the Hamiltonian Path problem via the

following algorithm, that we call FindHP. Consider all possible permutations of the vertices

of the graph (that is, all possible sequences that contain each vertex exactly once). Then

run VerifyHP with each such permutation as input. If the graph has an Hamiltonian Path,

this procedure guarantees to find it, because it tries all possibilities. Likewise, if no Hamilto-

nian Path is found after verifying all permutations, we are guaranteed that the graph does

not have any.

What is the time complexity of FindHP? Let VHP be the time complexity of VerifyHP, which

must be run on every possible permutation. Since there are n! = n · (n− 1) · (n− 2) · . . . · 2 ·
1 = O(nn) distinct permutations, the worst-case running time isO(nn · VHP), which is not
polynomial because the input size (n) (which is not a constant!) appears as exponent.

27NETWORKS GOES TO SCHOOL

Figure 2.2.2. An optimal biking route among all nodes in the graph made of 57,912 national

monuments in the Netherlands. Taken from the Travelling Salesman Problem website

(http://www.math.uwaterloo.ca/tsp/nl/index.html)

On the Network Pages

For further reading on algorithms, their complexity, their history, and their applica-

tions you can read the following articles.

(1) Enigma: a complexity titan by Stijn Maatje,

networkpages.nl/enigma-a-complexity-titan /.

(2) Cycling to 57,912 National Monuments in the Netherlands by Nicos Starreveld,

networkpages.nl/cycling-to-57912-national-monuments-in-the-netherlands/.

(3) Attacking complex problems using preprocessing by Astrid Pieterse,

networkpages.nl/attacking-complex-problems-using-preprocessing/.

(4) A multi-objective fight against prostate cancer by Stef Maree,

networkpages.nl/a-multi-objective-fight-against-prostate-cancer/.

(5) Google PageRank: how search engines ‘bring order to the Web’ by Nelly Litvak

networkpages.nl/google-pagerank-how-search-engines-bring-order-to-the-

web/.

28 NETWORKS GOES TO SCHOOL

2.3. Mathematics to make sports more honest

As the final minutes of the football European Championships final passed by, tensions grew,

not only with the spectators on the couch, but also in the stadium and on the pitch. None of

the teams wanted to be that team that made a fatal mistake with mere seconds left to play,

and see the other lift the trophy. Thus, the game faded, with everyone waiting anxiously

until the moment the referee blew the final whistle. At which point, the nerve-wrecking ex-

citement only just started.

The penalties. In a best-of-5 series, with sudden death if that resulted in a tie, both teams

had to take penalties to decide a winner. The Italians knew what they had to do, as they had

won the semi-finals after penalties.

It is an odd thing that some of the most influential moments at major football tournaments

have little to do with the regular game. Penalty series are a discipline on its own, or a lot-

tery, as some less-gifted penalty takers have called it at times.

They are no lottery, you could and should practice them to increase your chances, but they

are meant to give both teams an equal and fair chance of progressing to the next round or

even winning the tournament. And why wouldn’t they be fair? Both teams get the same

task - convert as many penalties as possible - and thus have the same chance of winning.

Right?

There is a catch. Both teams indeed have the same objective, but they don’t have the same

path. In a usual penalty series, there is one team that starts the series and the other one

has to catch-up all the time. Surprisingly, statistical research has suggested that this actu-

ally gives an advantage to the team starting first! This knowledge and feeling is in fact so

widely accepted that most trainers will have their team shoot first if they win the toss to

determine the starting team.

In this chapter we will look at a way to model this advantage, called First Mover Advantage

(FMA), and try to find different shooting orders for penalties that are fair.

2.3.1. Modelling First Mover Advantage
We want to model the above phenomenon, FMA. First we assume that both teams are equally

skilled. That way, any advantage or disadvantage that we may find, directly indicates an un-

fairness.

Next, we have to look at a penalty series. A series consists of rounds, in every round both

teams take one penalty. It starts with 5 rounds in a Best-of-5 series (later, we might replace

the 5 with a general number n) and, in the case of a tie, a sudden death phase starts - as

soon as one of the teams misses in a round and the other team scores, the series end.

29NETWORKS GOES TO SCHOOL

A way to model First Mover Advantage is given below:

Model 1

We call this first model the Simple(p, q) model.

• A team shooting first in a round scores with probability p.

• A team shooting second in a round scores with probability q.

Any choice of p > q could (and will) lead to unfairness. An alternative modelling approach is

the following:

Model 2

We call this first model the Pressure(p, q) model.

• When a team takes a penalty, while being at least equal in the score, they

score with probability p.

• When a team takes a penalty, while being behind, they score with probability

q.

The idea behind Model 2, is that a player that shoots while they are behind, feels the pres-

sure to catch up, and is thus more likely to miss. This is the model that we will mostly focus

on.

Fairness

We say a shoot-out is fair with respect to a model with parameters p, q, if:

P(Team A wins) = P(Team B wins) =
1

2
.

The notation P(A) denotes the probability of some event A.

This doesn’t look too exciting, but it is crucial to almost everything of our analysis.

2.3.2. Sudden death
Common penalty shoot-out have a sudden death phase, where every miss can be definitive.

We will only analyse this part, as it is the most interesting from a mathematical point of view

- there is no arbitrary cut-off moment as we have with the first phase, which is a best-of-5.

A sudden death consists of possibly infinitely many rounds, and all rounds start with an

equal standing between both the teams - if the standings are not equal, the sudden death

would have finished already.

30 NETWORKS GOES TO SCHOOL

Thus, we can define the probability of Team A winning a sudden death as:

P(Team A wins) =

∞∑
r=1

P(Team A wins in round r). (2.3.1)

And similarly for Team B. It is important to notice that a team can only win in a specific

round, if the sudden death reaches that round. Thus, we can write:

P(Team A wins in round r) = P(The first r − 1 rounds are tied)P(Team A wins in round r)

Any round is treated equally by both models 1 (Simple(p, q)) and 2 (Pressure(p, q)) , thus this

can be rewritten again as:

P(Team A wins in round r) = P(A round is tied)r−1P(Team A wins in round r)

We can calculate the probability that a round is drawn per model. This happens if either

both teams score, or both teams miss:

Simple(p, q) : P(Round is drawn) = p · q + (1− p)(1− q).

Pressure(p, q) : P(Round is drawn) = p · q + (1− p)(1− p).

Before proceeding try to understand why these formulas hold. When is a round a draw in

each of these models?

We can also calculate, for both models, the probability that the first shooting, denoted by

P+ from now on, (resp. second shooting, denoted by P− from now on) team wins the round.

The probability of a tie will be denoted from now on by P±. These probabilities are shown in

Table 2.3.1.

Model First wins Second wins Tie

Simple(p, q) p(1− q) (1− p)q pq + (1− p)(1− q)
Pressure(p, q) p(1− q) (1− p)p pq + (1− p)2

Table 2.3.1. Probabilities per model

EXERCISE 1. Given parameters p, q and model Simple(p, q), find - if possible - values p′, q′

such that Pressure(p’,q’) is equivalent - that is, both models have the same probabilities for

all three outcomes.

From here on we only consider the Pressure model. The reason why we do this is made

clear in Exercise 1, where it is asked to show that these models are equivalent.

Now that we determined the probability of the first shooting team winning, i.e. P+, second

shooting team winning, i.e. P−, and the probability of a tie, i.e. P±, we can further specify

31NETWORKS GOES TO SCHOOL

the probability of a team winning the sudden death given in (2.3.1). To do this, we need to

know in which rounds Team A actually shoots first. We denote these rounds by index set

I ⊂ N. Automatically, team B shoots first in all other rounds, Ic.

A normal penalty sequence has a single team always shooting first - the AAA-sequence,

referring to team A shooting first. The index set I belonging to this sequence is given by

IAAA = N, simply all the rounds. Another popular alternative that is used in some sports
and is trialled in football, is the ABBA-sequence, which should be read as A(B)B(A).

Team A and B alternate shooting first. When using this sequence, I equals all the odd num-

bers and Ic all the even numbers.

Without choosing any set I yet, we get to the following expression for the winning probabil-

ity of team A:

P(Team A wins) =
∞∑
r=1

P r−1
± P(Team A wins in round r)

=
∑
r∈I

P r−1
± P+ +

∑
r∈Ic

P r−1
± P−.

Using Table 2.3.1, we see that P+ − P− = p(p− q) =: pλ, where λ = p− q - as we assumed

p > q, λ > 0. This means we can replace P+ = P− + pλ, and using that N = I ∪ Ic, leads to:

P(Team A wins) = P−
∑
r∈N

P r−1
± + pλ

∑
r∈I

P r−1
± .

EXERCISE 2. When we define f(I, P±) =
∑

r∈I P
r−1
± , show that:

P(Team A wins) =
P−

1− P±
+ pλf(I, P±).

P(Team B wins) =
P−

1− P±
+ pλf(Ic, P±).

Hint: Use the expression for the sum of the terms in a geometric regression in (1.4.2).

Thus, for any shoot-out with fA := f(I, P±) and fB = f(Ic, P±), it is fair if fA = fB .

Criterium for fairness

Models 1 and 2 and the compact notation used above to write down the probabil-

ities that each team wins allow us now to state a criterion for fairness, namely, any

shoot-out with fA := f(I, P±) and fB = f(Ic, P±), it is fair if fA = fB .

It is time to put the result from Exercise 2 to use.

32 NETWORKS GOES TO SCHOOL

EXAMPLE 2.3.1 (Unfair sequences). We check two mentioned shootout-series, the com-

mon AAAA and the ABBA order. We know that IAAA = N is the index set of the common

penalty series, that is team A always shoots first. Then:

fA := f(IAAA, P±) =
1

1− P±
fB := f(IcAAA, P±) = 0

Clearly, we can conclude that the regular series is unfair, as fA > 0.

For the ABBA-series, we know that IAB = {1, 3, 5, . . . } is the index set belonging to Team A

in this series. Hence the index set belonging to Team B in this series is IcAB = {2, 4, 6, . . .}.
Then:

fA =
∑

r∈IAB

P r−1
± =

1

P±

∑
r∈IAB

P r
± =

1

P±

∑
r′∈Ic

AB

P r′−1
± =

fB
P±

.

As P± < 1, we see that fA > fB , thus we can conclude that even the ABBA-series is unfair.

We found that both these sequences are unfair. Why, and should we be surprised? No, we

shouldn’t be surprised at all - as will become clear in the next paragraph. Both the AAAA-

as the ABBA-sequence, are examples of repetitive sequences, meaning that after a fixed

amount of rounds, resp. 1 and 2, the sequence repeats it self. Every repetitive shootout S is
determined by the part S that gets repeated (obviously). If we denote k as the length of the

repeated part S and IS as Team A’s index set in these k rounds, we see that:

fA =
∑
r∈I

P r
± =

∑
r∈IS

P r−1
±

+

∑
r∈IS

P r+k−1
±

+ . . . =

∑
r∈IS

P r−1
±

1− P k
±

.

Do you see why the last equality holds? Try to spot the geometric regression hidden in the

sum in the middle!

With IcS = N≤k \ IS the index set of rounds where Team B shoots first leading to:

fA = fB ⇐⇒
∑
r∈IS

P r−1
± =

∑
r∈Ic

S

P r−1
± .

This formula leads to many conclusions, but most importantly, if we take p, q to be any ra-

tional number, i.e. a fraction, it can be shown that no finite repeated sequence will ever be

fair!

2.3.3. Looking for fair sequences
In the previous section, we analysed the set-up of a sudden death shootout, and showing

unfairness of the most common sequences. However, we would like to find nice sequences

that are fair. The idea of the ABBA-sequence, is that having Team B should first in all the

33NETWORKS GOES TO SCHOOL

even rounds, cancels the advantage of Team A shooting first in odds rounds. This does not

work, unfortunately, as the fact that Team A consistently has its advantage first, is in itself

an advantage. But, we might expand on this idea.

What if we flip the order of penalties after the second round again for the two rounds after

that? And, for the following four rounds, flip them again? And so on and so on. Wouldn’t

that cancel out any of the sequences?

The Prohuet-Thue-Morse sequence

The Prohuet-Thue-Morse sequence is created like this:

• The first two terms are given by 01.

• The second two terms are given the inverse, 10, thus leading to 0110.

• The next four terms are given by its inverse, leading to 01101001.

• etc.

We can apply this sequence, hypothetically, as an order for the penalties in a shootout.

Theorem 2.3.1. The PTM-sequence SPTM as a penalty shoot-out in the sudden death, is still

unfair, for any value of p, q, P±.

Proof. To prove this theorem, we need to find a way to express fA, fB of the given sequence

SPTM . We will not specifically look at fA, fB , but at their difference, fA − fB:

fA − fB =
∑

r∈IPTM

P r−1
± −

∑
r∈Ic

PTM

P r−1
± = 1− P± − P 2

± + P 3
± + . . .

EXERCISE 3. Argue that, as the order of the shootout is inverted after 2k rounds, we can

write:

∆ := fA − fB = (1− P±)
(
1− P 2

±
) (

1− P 4
±
)
· · · =

∞∏
k=1

(
1− P 2k

±

)
If we want to prove unfairness in all situations, we need to prove∆ > 0 whenever P± >

0. But is it? From exercise 3, we have that we can write∆ as a product of terms. And, one

might think that, as all the individual terms (1−P 2k

±) are non-zero (> 0), the product itself is

non-zero. Except, we have an infinite number of terms, which makes things complicated. To

see why, see the following product:

Z =

(
1− 1

2

)(
1− 1

3

)(
1− 1

4

)
· · · =

∞∏
k=2

1− 1

k

This only has non-zero terms multiplied, so one could think that Z > 0. In fact, Z = 0, as:

Z =

∞∏
k=2

1− 1

k
=

∞∏
k=2

k − 1

k
= lim

k→∞

1

2
· 2
3
· 3
4
· · · k − 1

k
= lim

k→∞

1

k
= 0

34 NETWORKS GOES TO SCHOOL

Thus, the question remains whether (and for which P±) the corresponding∆ is bigger than

0. There are several ways to approach this - one is to look for the right theorems in the liter-

ature. We will do it more intuitively.

Lets write∆(x) =
∏∞

k=0(1 − x2k), the original expression for∆ with the term P± replaced

by variable x. Notice that the following holds:

∆(x2) = (1− x)∆(x)

As we want to prove that∆(x) > 0 for 0 < x < 1, we immediately see that∆(x) = 0

would imply that∆(x2) = 0 (*). And this holds for general x. It is not difficult to see that

∆(x) ≥ ∆(y) when x ≤ y (**). Combining these two observations (*) and (**), we find that:

If there is 0 < x < 1 such that∆(x) = 0then∆(x) = 0 for all 0 < x < 1

From this statement, the only thing that is left to prove that∆(x) > 0 for all 0 < x < 1, is

proving that there exists an x for which∆(x) > 0. This is asked in one of the exercises in

3.5.

Finding a fair sequence
So far, we have not found any fair sequences. However, it is very well possible to find a fair

sequence for any given value p, q ∈ Q.

The following algorithm does so:

Algorithm to find a fair sequence

• Fix p, q as values that resemble reality. For instance, p = 3
4 , q = 2

3 . Let I, I
c be

the rounds where A,B shoot first respectively.

• Assign Team A to shoot first in the first round.

• In any round r, calculate

fr
A =

∑
i∈I,i<r

P i−1
±

and

fr
B =

∑
i∈Ic,i<r

P i−1
± .

Let A shoot first in round r if fr
A ≥ fr

B , and B otherwise.

• Do until infinity.

This algorithm produces a fair sequence for any p, q as long as P± ≥ 1
2
. Why? When P± < 1

2
,

after the advantage gained by shooting first in the first round, it is very unlikely that more

rounds will be played (as P± < 1
2
) so it is impossible to make up for the disadvantage.

35NETWORKS GOES TO SCHOOL

When P± ≥ 1
2
, the advantage to either of the sides will be less then some constant times

P r−1
± in round r, thus in the long run, the sequence will be fair.

EXERCISE 4. For p = 3
4
, q = 2

3
, determine the order of the first 10 penalties according to

the algorithm above.

36 NETWORKS GOES TO SCHOOL

Figure 2.3.1. For an honest, nice, and successful tournament it is important to make a schedule

which is as balanced as possible. What would you think if we told you that a balanced schedule

for the Premier League of Darts exists… and is not used…

On the Network Pages

For further reading on applications of mathematics in sports you can read the fol-

lowing articles.

(1) A balanced schedule for the Premier League of Darts exists… and is not used…

by Roel Lambers, Rudi Pendavingh and Frits Spieksma,

networkpages.nl/a-balanced-schedule-for-the-premier-league-of-darts-exists-

and-is-not-used/ .

(2) How the schedule in the TATA Steel Chess Championship forced Carlsen to help

Caruana win by Roel Lambers, Jasper Nederlof and Frits Spieksma ,

networkpages.nl/how-the-schedule-in-the-tata-steel-chess-championship-

forced-carlsen-to-help-caruana-win/.

37NETWORKS GOES TO SCHOOL

38 NETWORKS GOES TO SCHOOL

39NETWORKS GOES TO SCHOOL

3.1. Exercises on algorithms
EXERCISE 5. What does Algorithm 4 below give as output?

Algorithm 4 An Algorithm A

1: INPUT: An array of numbers A[1, . . . , n].
2: OUTPUT: ????

3: i← 1, amount← 0;
4: while i ≤ n do
5: if A[i] > 0 then
6: amount←amount+1
7: i←i+1;
8: return amount;

Remark

Note that the command “i← i+ 1” is indented a bit, and straight under if and then.

This indicates that this command belongs at the while-command. The command

“return amount” is not indented, and is therefore only executed after the while-

command has been completed.

EXERCISE 6. (Be careful! Trick question)

What does Algorithm 5 below give as output?

Algorithm 5 A crazy algorithm∞
1: INPUT: An array of numbers A[1, . . . , n].
2: OUTPUT: ????

3: i← 1, total← 0;
4: while i ≤ n do
5: total←total+A[i]
6: return total;

EXERCISE 7. What does Algorithm 6 below give as output?

EXERCISE 8. Write pseudocode for an algorithm which, for a given array A[1, . . . , n] of n

numbers, computes the largest number in the array.

EXERCISE 9. Write pseudocode for an algorithm which, for a given array A[1, . . . , n] of n

numbers and a number q, gives True if there are indices i < j such that A[i] +A[j] = q.

40 NETWORKS GOES TO SCHOOL

Algorithm 6 Algorithm B

1: INPUT: An array of numbers A[1, . . . , n].
2: OUTPUT: ????

3: i← 1, total← 0;
4: while i ≤ n do
5: total←total+A[i]
6: i←i+1
7: return total;

3.2. Exercises on graph theory

3.2.1. Finding Eulerian and Hamiltonian paths
EXERCISE 10. Find Eulerian and Hamiltonian paths in each of the following graphs (if pos-

sible). You need to try different starting points in order to find a path.

6

4

5 1

23

6

4

5 1

23

3.3. Exercises on algorithmic complexity

EXERCISE 11. Suppose you have a computer that can execute 10 millions (107) instruc-

tions per second. You are provided two algorithm for a certain task: Algorithm A solves it

with 60 log2(n) instructions for an input of size n, Algorithm B with 3n instructions. How

long does each of the algorithms take to solve the task for an input of size 108? And for an

input of size 1012?

EXERCISE 12. Consider Algorithm VerifyHP described in Section 2.2.1. Can you tell what is

its worst-case running time?

EXERCISE 13. Consider the graph on the left of Figure 2.2.1. Take any permutation of its 8

vertices (e.g. acebghfd) and verify using Algorithm VerifyHP, described in Section 2.2.1, that

it does not correspond to an Hamiltonian path.

41NETWORKS GOES TO SCHOOL

EXERCISE 14. Consider the graph on the right of Figure 2.2.1. Can you find an Hamiltonian

path different from the one highlighted in the figure?

3.4. Exercises on sums and products
EXERCISE 15. Use the summation and product notation to write down in a compact man-

ner the following sums and products.

S1 =4 + 5 + 6 + 7 + 8 + 9 + 10

S2 =2 + 4 + 6 + 8 + 10

S3 =3 · 5 · 7 · 9 · 11 · 13

S4 =1 + 0.5 + 0.25 + 0.125 + 0.0625 + . . .

S5 =1 + 22 + 32 + 42 + 52 + 62.

EXERCISE 16. Use the expressions in 1.4.1 and 1.4.2 to compute the following sums

Σ1 =
10∑

k=0

3k

Σ2 =

6∑
k=3

0.3k

Σ3 =

∞∑
k=0

0.7k.

3.5. Exercises First Mover Advantage
EXERCISE 17. Given parameters p, q and model Simple(p, q), find - if possible - values p′, q′

such that Pressure(p’, q’) is equivalent - that is, both models have the same probabilities for

all three outcomes.

EXERCISE 18. When we define f(I, P±) =
∑

r∈I P
r−1
± , show that:

P(Team A wins) =
P−

1− P±
+ pλf(I, P±).

P(Team B wins) =
P−

1− P±
+ pλf(Ic, P±).

Hint: Use the expression for the sum of the terms in a geometric regression in (1.4.2).

Thus, for any shoot-out with fA := f(I, P±) and fB = f(Ic, P±), it is fair if fA = fB .

42 NETWORKS GOES TO SCHOOL

EXERCISE 19. Argue that, as the order of the shootout is inverted after 2k rounds, we can

write:

∆ := fA − fB = (1− P±)
(
1− P 2

±
) (

1− P 4
±
)
· · · =

∞∏
k=1

(
1− P 2k

±

)
EXERCISE 20. Show that∆(1

2
) > 0.

EXERCISE 21. For p = 3
4
, q = 2

3
, determine the order of the first 10 penalties according to

the algorithm above.

43NETWORKS GOES TO SCHOOL

44 NETWORKS GOES TO SCHOOL

45NETWORKS GOES TO SCHOOL

4.1. Algorithms
1. Algorithm 4 gives as output the total number of positive numbers in the array A[1, . . . , n].

2. Algorithm 5 doesn’t give any output, it never terminates since the while-loop never

ends. In the while-loop the variable i always stays equal to 1.

3. Algorithm 6 gives as output the sum of the numbers in the array A[1, . . . , n].

4.2. Algorithmic complexity

1. For an input of size 108 Algorithm A uses in total 60 log2(10
8) = 480 log2(10) ≈

480 · 3.321928 ≈ 1595 instructions. Algorithm B uses in total 3 · 108 = 300.000.000

instructions. A computer that can execute 10 millions instructions per second needs

(a) 1595
107

= 0.0001595 seconds (0.1595 milliseconds) to solve the task using Al-

gorithm A;

(b) 3·108
107

= 30 seconds to solve the task using Algorithm B.

2. The worst-case running time of VerifyHP occurs when the algorithm needs to check

all n vertices in the sequence without terminating. This means that the given se-

quence has length n and no vertex is repeated. Afterwards the algorithm will control

the edges, in the worst-case running time all edges in the given sequence (in total

n − 1) will be controlled. Thus, the worst-case running time of VerifyHP is n · (n − 1),

which is O(n2).

3. In all permutations of the 8 vertices no vertices will be repeated, hence the algorithm

will proceed to check the edges. No matter which permutation you choose the al-

gorithm will always find two vertices in the sequence for which there is no edge in the

graph. Take for example the permutation acebghfd, you can see that edge fd does

not exist in the graph in Figure 2.2.1.

4. Try the path γαβδηε.

4.3. First Mover Advantage
1. In order to find these parameters p′, q′ we need to solve a system of two equations

with two unknowns. The two equations we need to solve are

P(1st shooter wins in Simple(p, q)) = P(1st shooter wins in Pressure(p′, q′))

and

P(2nd shooter wins in Simple(p, q)) = P(2nd shooter wins in Pressure(p′, q′)).

46 NETWORKS GOES TO SCHOOL

In these two equations the variables p′, q′ are the unknowns. Using Table 2.3.1 we

obtain the following equations

p(1− q) = p′(1− q′) and (1− p)q = (1− p′)p′. (4.3.1)

The second equation is a second order equation in p′, hence we can use the abc-

formula. This equation can be rewritten as

(p′)2 − p′ + (1− p)q = 0,

which has the two solutions

p′12 =
1±

√
1− 4(1− p)q

2
.

We know that p′ represents a probability, hence one of the two solutions can be dis-

regarded. Hence we have that

p′ =
1−

√
1− 4(1− p)q

2
.

Since p > q we also have that (1− p)q < (1− p)p which is less than 0.25 for all values

of p between 0 and 1. Hence p′ is well defined since the quantity in the square root is

non-negative. Using the first equation in (4.3.1) we find

q′ = 1− p(1− q)

p′
= 1− 2p(1− q)

1−
√

1− 4(1− p)q
=

√
1− 4(1− p)q − 2p(1− q)

1−
√

1− 4(1− p)q
.

2. We show that∆(1
2
) > 0. We know that

∆(x) =
∞∏

k=0

(1− x2k),

and consequently

∆(
1

2
) =

∞∏
k=0

(
1− 1

22k

)
= (1− 1

2
)(1− 1

4
)(1− 1

16
) · · · .

To show that∆(1
2
) > 0 we use the property that

1−
∞∑

k=0

1

22k
≤

∞∏
k=0

(1− 1

22k
).

The infinite sum on the left hand side converges to a number less than 1, since

∞∑
k=0

1

22k
<

∞∑
k=1

1

2k
= 1.

This shows that
∞∏

k=0

(1− 1

22k
) > 0.

