Synchronization on complex networks A model for neural networks

Janusz Meylahn

Dutch Institute for Emergent Phenomena - University of Amsterdam

26 March 2021

Janusz Meylahn [Synchronization on complex networks](#page-75-0)

• a short introduction

Janusz Meylahn [Synchronization on complex networks](#page-0-0)

 \leftarrow

E

÷ \sim э \mathbf{h}

4

つくへ

- a short introduction
- what a stochastic process is

つくへ

∍

∍

- a short introduction
- what a stochastic process is
- synchronization: what, how and why?

- a short introduction
- what a stochastic process is
- synchronization: what, how and why?
- Kuramoto: a mathematical model

- a short introduction
- what a stochastic process is
- synchronization: what, how and why?
- Kuramoto: a mathematical model
- when there is synchronization

Janusz Meylahn [Synchronization on complex networks](#page-0-0)

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

目

1 Spreading of rumour

4日)

 \rightarrow \equiv \rightarrow

 \rightarrow

E

B.K.

- **1** Spreading of rumour
- ² Searching for information on the internet

つくへ

∍

E

- **1** Spreading of rumour
- ² Searching for information on the internet
- ³ Formation of polymers

 QQ

∍

э

- **1** Spreading of rumour
- ² Searching for information on the internet
- ³ Formation of polymers
- ⁴ Synchronization of neurons firing in brain

What are some differences here?

- **1** Spreading of rumour
- **2** Searching for information on the internet
- **3** Formation of polymers
- ⁴ Synchronization of neurons firing in brain

What are some differences here?

1 Network as interactions or as paths

- **1** Spreading of rumour
- **2** Searching for information on the internet
- ³ Formation of polymers
- ⁴ Synchronization of neurons firing in brain

What are some differences here?

- **1** Network as interactions or as paths
- **2** Process on each site or moving on network

- **1** Spreading of rumour
- **2** Searching for information on the internet
- **3** Formation of polymers
- ⁴ Synchronization of neurons firing in brain

What are some differences here?

- **1** Network as interactions or as paths
- **2** Process on each site or moving on network
- ³ Continuous space or discrete space

- **1** Spreading of rumour
- **2** Searching for information on the internet
- **3** Formation of polymers
- ⁴ Synchronization of neurons firing in brain

What are some differences here?

- **1** Network as interactions or as paths
- **2** Process on each site or moving on network
- Continuous space or discrete space
- **4** Dynamic or static network

4日下 ×

御き メミメ メミメー

E

• Fireflies flashing in the jungle

E

Э×

э

4

つくへ

- **•** Fireflies flashing in the jungle
- ² Electricity generators on power grid

∍

つくへ

- **•** Fireflies flashing in the jungle
- ² Electricity generators on power grid
- ³ Audience clapping after concert

- **•** Fireflies flashing in the jungle
- ² Electricity generators on power grid
- **3** Audience clapping after concert
- **4** Neurons firing in the brain

- **1** Fireflies flashing in the jungle
- ² Electricity generators on power grid
- **3** Audience clapping after concert
- **4** Neurons firing in the brain
- **6** Gravitational synchronization of meteors

- **1** Fireflies flashing in the jungle
- ² Electricity generators on power grid
- **3** Audience clapping after concert
- **4** Neurons firing in the brain
- **6** Gravitational synchronization of meteors
- **6** and many more...

- **1** Fireflies flashing in the jungle
- ² Electricity generators on power grid
- **3** Audience clapping after concert
- **4** Neurons firing in the brain
- **6** Gravitational synchronization of meteors
- **6** and many more...

If you are looking for your next popular science book to read try: 'Sync: The emerging science of spontaneous order' - Steven **Strogatz**

YouTube Video

Janusz Meylahn [Synchronization on complex networks](#page-0-0)

 \leftarrow \Box \rightarrow

K 御 ▶ K 君 ▶ K 君 ▶

目

 \leftarrow

э \sim 一心語 . p 目

Ingredients

some randomness

 \overline{a}

E

Э×

 \prec э

 \mathbb{R}

Ingredients

- some randomness
- a recipe describing situation as function of randomness

 Ω

Ingredients

- **·** some randomness
- a recipe describing situation as function of randomness
- some idea of time

 Ω

Ingredients

- **•** some randomness
- a recipe describing situation as function of randomness
- some idea of time

Example: Coin flipping

- \bullet win 1 \in if heads
- o $\log e \ 1 \in$ if tails

$\omega = \{H, T, T, T, T, H, T, H, ...\}$

何 ▶ (三) (三)

How can you calculate your wealth after *n* coin flips?

- **1** Given a sequence of coin-flip outcomes ω construct a function $X_n(\omega)$ representing your wealth after the n^{th} flip, if you win a euro when the outcome is heads and lose a euro if the outcome is tails.
- 2 Calculate the probability of having three euros after five coin flips given that the coin is head with probability $1/2$.

Solution:

$$
\mathbf{O} \; X_n(\omega) = \sum_{i=1}^n \left[\mathbb{1}_{\{\omega_i = H\}} - \mathbb{1}_{\{\omega_i = T\}} \right]
$$

$$
\bullet \ \mathbb{P}[X_5(\omega) = 4] = \binom{5}{4} (1/2)^3 (1/2)^2 = 5/32.
$$

Single noisy oscillator

Consider a metronome in the wind:

"State" characterized by position and velocity. Can we go simpler? Consider a circle:

- all the way to the right \rightarrow top point (0 degrees)
- **•** straight and moving to the left \rightarrow right point ($\pi/2$ degrees)
- all the way to the left \rightarrow bottom point (π degrees)
- straight and moving to the right \rightarrow left point (3 $\pi/2$ degrees)

 Ω

So each position of the metronome can be described by an angle $\theta \in [0, 2\pi)$. Depending on the mass (m) and length L it will move with some frequency, say ω . We can then write the evolution of the metronome as:

$$
\frac{\mathrm{d}\theta(t)}{\mathrm{d}t} = \omega + \xi(t) \tag{1}
$$

つくい

 $\xi(t)$ is noise which has $\langle \xi(t) \rangle = 0$ and $\langle \xi(t) \xi(t') \rangle = 2D\delta(t-t').$

- \bullet $\xi(t)$ is constructed using the sort of procedure we went through earlier
- the difference here is that time is a continuous "index".
- $\epsilon(t)$ is representing the random aspect of the evolution due to the wind.

To illustrate please open up:

<https://www.networkpages.nl/synchrony-animation/>

つくへ

ヨメ メヨメ

To illustrate please open up:

<https://www.networkpages.nl/synchrony-animation/>

And fill in: $N_1 = 1$, $N_2 = 0$, $K_1 = L_1 = K_2 = L_2 = 0$, $D = 1$ under the Dynamics section. In the Initialization section set both $u_1 = u_2 = 0$ and $r_1 = r_2 = 0$ and pick between "Constant zero" and "Standard normal" for your frequency distribution.

Q: What happens?

Including an interaction (two metronomes)

What happens if I include the following interaction?

$$
\frac{\mathrm{d}\theta_1(t)}{\mathrm{d}t} = \omega_1 + \sin(\theta_2 - \theta_1) + \xi_1(t) \tag{2}
$$

$$
\frac{\mathrm{d}\theta_2(t)}{\mathrm{d}t} = \omega_2 + \sin(\theta_1 - \theta_2) + \xi_2(t) \tag{3}
$$

- Consider two points on the circle.
- Determine the sign of the interaction terms.
- What can you conclude?

[Exercise and poll]

[10 minute break!]

メロトメ部 トメミトメミト

E

Janusz Meylahn [Synchronization on complex networks](#page-0-0)

4日) ×

個 ▶ < ミ ▶ < ミ ▶

E

Achtung! Mathematics ahead!

E

 \mathbb{R}^n

 \sim \sim

※ 君 お ※ 君 おい

Achtung! Mathematics ahead! Consider:

- \bullet N oscillators
- $\theta_i(t)$ phase of i^{th} oscillator

 2990

∍

化重新润滑脂

Achtung! Mathematics ahead! Consider:

- \bullet N oscillators
- $\theta_i(t)$ phase of i^{th} oscillator

Oscillators evolve according to a system of coupled stochastic differential equations

$$
\frac{\mathrm{d}\theta_i(t)}{\mathrm{d}t} = \omega_i + \frac{K}{N} \sum_{j=1}^N \sin\left[\theta_j(t) - \theta_i(t)\right] + \xi_i(t). \tag{4}
$$

 Ω

Achtung! Mathematics ahead! Consider:

- \bullet N oscillators
- $\theta_i(t)$ phase of i^{th} oscillator

Oscillators evolve according to a system of coupled stochastic differential equations

$$
\frac{\mathrm{d}\theta_i(t)}{\mathrm{d}t} = \omega_i + \frac{K}{N} \sum_{j=1}^N \sin\left[\theta_j(t) - \theta_i(t)\right] + \xi_i(t). \tag{4}
$$

Here, $K \in (0, \infty)$ is the interaction strength, $D \in (0, \infty)$ is the noise strength (contained in $\xi_i(t)$).

Achtung! Mathematics ahead! Consider:

- \bullet N oscillators
- $\theta_i(t)$ phase of i^{th} oscillator

Oscillators evolve according to a system of coupled stochastic differential equations

$$
\frac{\mathrm{d}\theta_i(t)}{\mathrm{d}t} = \omega_i + \frac{K}{N} \sum_{j=1}^N \sin\left[\theta_j(t) - \theta_i(t)\right] + \xi_i(t). \tag{4}
$$

Here, $K \in (0, \infty)$ is the interaction strength, $D \in (0, \infty)$ is the noise strength (contained in $\xi_i(t)$).

Question:

Can you spot the network here?

∢ロ ▶ ∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

 QQ

∍

Cartoon of the Kuramoto model for $N = 6$

4日)

 \mathbb{R}

大唐 わえ 唐 わい

目

Janusz Meylahn [Synchronization on complex networks](#page-0-0)

 \sim \sim

E

÷ → <唐>

 \mathbb{R} 4

Order parameter

$$
r_N(t) e^{i\psi_N(t)} = \frac{1}{N} \sum_{j=1}^N e^{i\theta_j(t)}.
$$
 (5)

 \sim \sim

④重き ④重き 。

 \mathbf{K}

E

Order parameter

$$
r_N(t) e^{i\psi_N(t)} = \frac{1}{N} \sum_{j=1}^N e^{i\theta_j(t)}.
$$
 (5)

- $r_N(t)$ synchronization level
- $\phi_W(t)$ average phase

E

化重 经一

おくぼう

Order parameter

$$
r_N(t) e^{i\psi_N(t)} = \frac{1}{N} \sum_{j=1}^N e^{i\theta_j(t)}.
$$
 (5)

- $r_N(t)$ synchronization level
- $\phi_W(t)$ average phase

Phase distributions with $r = 0.095$ a[nd](#page-46-0) $r = 0.929$.

Kuramoto's Trick

Multiplying both sides by $e^{-i\theta_i}$ gives

$$
r_N(t)e^{i(\psi_N(t)-\theta_i(t))}=\frac{1}{N}\sum_{j=1}^N e^{i(\theta_j(t)-\theta_i(t))}.
$$
 (6)

Express both complex exponentials using Euler

$$
r_N(t)\cos(\psi_N(t) - \theta_i(t)) + ir_N(t)\sin(\psi_N(t) - \theta_i(t)) \qquad (7)
$$

= $\frac{1}{N}\sum_{j=1}^N \left[\cos(\theta_j(t) - \theta_i(t)) + i\sin(\theta_j(t) - \theta_i(t))\right].$

e Rewrite:

$$
r_N(t)\cos(\psi_N(t) - \theta_i(t)) = \frac{1}{N}\sum_{j=1}^N \cos(\theta_j(t) - \theta_i(t))
$$

$$
r_N(t)\sin(\psi_N(t) - \theta_i(t)) = \frac{1}{N}\sum_{j=1}^N \sin(\theta_j(t) - \theta_i(t)).
$$

Plugging in to the evolution equation gives

$$
d\theta_i(t) = K r_N(t) \sin \left[\psi_N(t) - \theta_i(t)\right] dt + D dW_i(t), \qquad (8)
$$

- The equation basically says that you only interact with the average angle of the oscillators
- and that your interaction is *modulated* by the amount of synchronization there is.
- **•** This is an example of what is called a *mean-field* model.

Notice the importance of the choice of order parameter!

The large N limit

As N gets ever larger, you can describe the evolution of the oscillators as the evolution of a density.

The large N limit

As N gets ever larger, you can describe the evolution of the oscillators as the evolution of a density.

But what is a density??

The large N limit

As N gets ever larger, you can describe the evolution of the oscillators as the evolution of a density.

But what is a density??

The large time limit (steady-state)

Question: Does the density of the system stop evolving at some point?

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

ă

[10 minute break]

Feel free to experiment with the online animation.

 \sim \sim

 299

э

医单位 医单位

Critical threshold

There exists a critical threshold K_c such that:

- (1) For $K < K_c$ the system relaxes to an unsynchronized state $(r = 0)$.
- (II) For $K > K_c$ the system relaxes to a partially synchronized state $(r > 0)$.

Critical threshold

There exists a critical threshold K_c such that:

- (1) For $K < K_c$ the system relaxes to an unsynchronized state $(r = 0)$.
- (II) For $K > K_c$ the system relaxes to a partially synchronized state $(r > 0)$.

Theorem

If
$$
D = 1
$$
, then $K_c = 1$.

To illustrate please open up:

<https://www.networkpages.nl/synchrony-animation/>

つくへ

э

To illustrate please open up:

<https://www.networkpages.nl/synchrony-animation/>

And fill in: $N_1 = 50$, $N_2 = 0$, $K_1 = 2$ and $L_1 = K_2 = L_2 = 0$, $D = 1$ under the Dynamics section. In the Initialization section set both $u_1 = u_2 = 0$ and $r_1 = r_2 = 0$ and pick between "Constant zero" and "Standard normal" for your frequency distribution.

• What happens?

To illustrate please open up:

<https://www.networkpages.nl/synchrony-animation/>

And fill in: $N_1 = 50$, $N_2 = 0$, $K_1 = 2$ and $L_1 = K_2 = L_2 = 0$, $D = 1$ under the Dynamics section. In the Initialization section set both $u_1 = u_2 = 0$ and $r_1 = r_2 = 0$ and pick between "Constant zero" and "Standard normal" for your frequency distribution.

- What happens?
- What happens if you set $K_1 = 1$? Does that contradict the previous result?

a mara a mara s

For steady-state solution r must satisfy:

$$
r = V\left(\frac{2Kr}{D}\right),\tag{9}
$$

where $V(\cdot)$ is a special function with $V(0)=0$ and $V'(0)=1/2.$ For critical threshold use Taylor expansion, i.e., for small values of x

$$
V(x) < V(0) + V'(0) x.
$$
 (10)

つくへ

- What is the critical threshold now?
- Does this make sense?

[Exercise and poll]

Solution

• By using the function properties in [\(10\)](#page-60-0) we get

$$
V(x) < \frac{1}{2} \, x. \tag{11}
$$

• Replace the right hand side of [\(9\)](#page-60-1) with this equation so

$$
r < \frac{1}{2} \frac{2Kr}{D}.\tag{12}
$$

Canceling the r's, 2's and moving everything except the K to the other side we obtain the new critical threshold:

$$
K_c = D < K. \tag{13}
$$

つくへ

Yes! If there is more noise in the system (corresponding to a larger value of D) we expect that it will be harder to synchronize so that we will need a larger K .

Janusz Meylahn [Synchronization on complex networks](#page-0-0)

4日下

メ御き メミド メミド

E

• There are many different types of processes to study on networks.

E

Э×

一 三

- There are many different types of processes to study on networks.
- Networks really play an important role almost everywhere.

 Ω

- There are many different types of processes to study on networks.
- Networks really play an important role almost everywhere.
- Synchronization is an example that is particularly interesting.

- There are many different types of processes to study on networks.
- Networks really play an important role almost everywhere.
- Synchronization is an example that is particularly interesting.
- Using mathematics we can determine a critical threshold.

- There are many different types of processes to study on networks.
- Networks really play an important role almost everywhere.
- Synchronization is an example that is particularly interesting.
- Using mathematics we can determine a critical threshold.
- Synchronization is achieved if the interaction wins the battle against the noise.

つくい

Suprachiasmatic nucleus

Janusz Meylahn [Synchronization on complex networks](#page-0-0)

4 0 8

メ御 ドメ 君 ドメ 君 ドー

E

Suprachiasmatic nucleus

• SCN has a strong community structure

つくへ

э

∍

Suprachiasmatic nucleus

- SCN has a strong community structure
- interaction between the communities is negative

Suprachiasmatic nucleus

- SCN has a strong community structure
- interaction between the communities is negative
- **o** this is the case in all mammals

つくい
§ 'Complex' Network

Suprachiasmatic nucleus

- SCN has a strong community structure
- interaction between the communities is negative
- **o** this is the case in all mammals
- structure might play a role in richness and robustness of SCN

つくい

Suprachiasmatic nucleus

- SCN has a strong community structure
- **•** interaction between the communities is negative
- **•** this is the case in all mammals
- structure might play a role in richness and robustness of SCN
- malfunctioning can cause health problems ranging from epilepsy to narcolepsy

つくい

Suprachiasmatic nucleus

- SCN has a strong community structure
- **•** interaction between the communities is negative
- **o** this is the case in all mammals
- structure might play a role in richness and robustness of SCN
- malfunctioning can cause health problems ranging from epilepsy to narcolepsy

Synchronization on complex network

 \overline{a}

E

∍ \mathbf{h} 299