

Finding the optimal route in a road traffic network

GRAPH THEORY

Networks goes to school March 17, 2021

Rens Kamphuis

What	are	networks?	

network

noun [C]

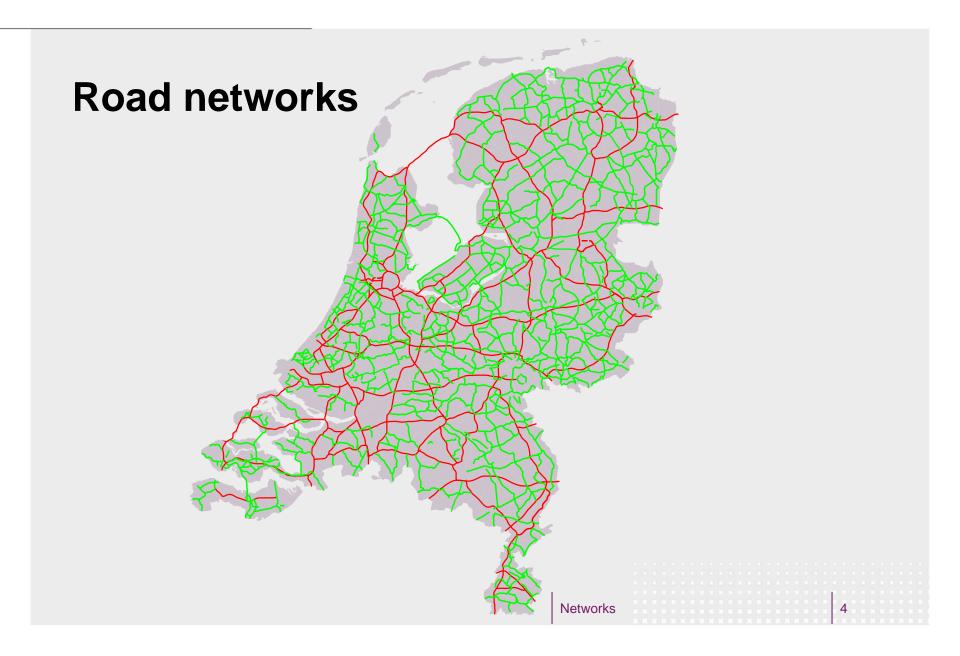
UK ◀》 /'net.wɜːk/ US ◀》 /'net.wɜ·ːk/

B2

a large system consisting of many similar parts that are connected together to allow movement or communication between or along the parts

Networks			
INCLIVITING			

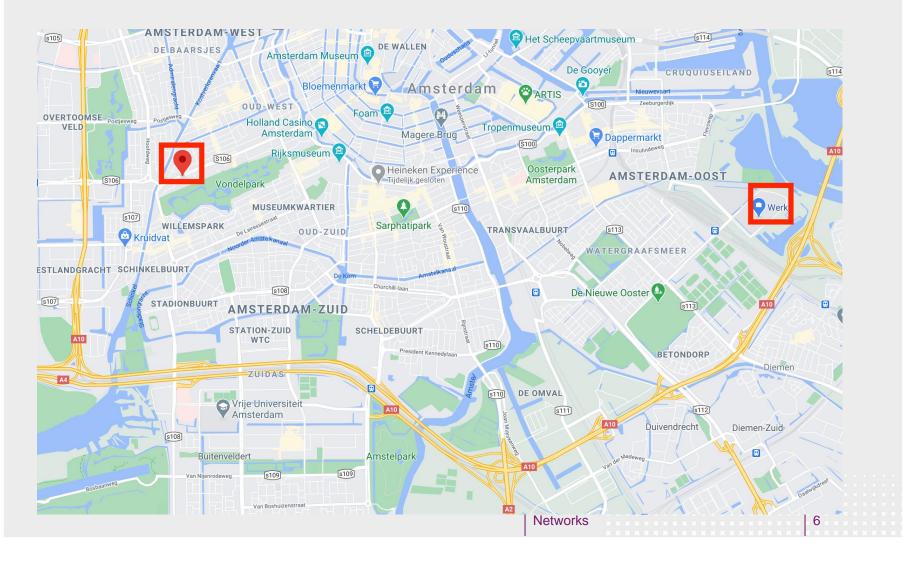
+ 🖂



What are networks?

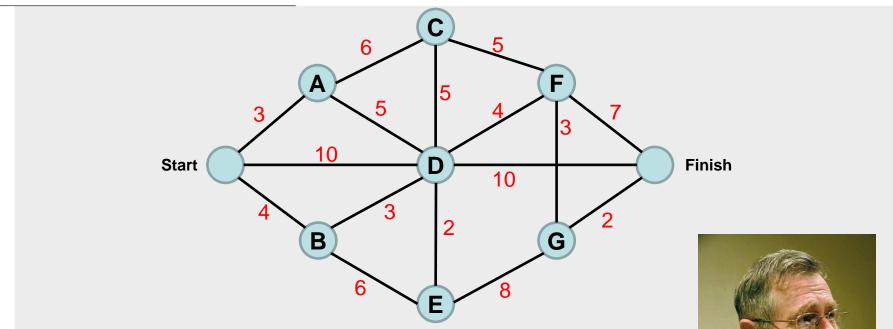
UNIVERSITY OF AMSTERDAM

Ř


Why study networks?

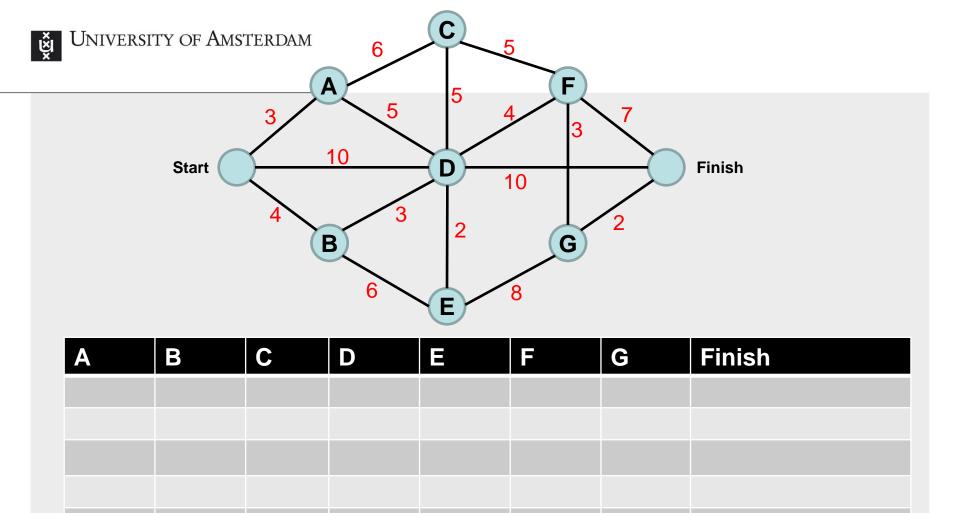
- What is the shortest route to reach my destination?
- What route is least likely to suffer from traffic jams?

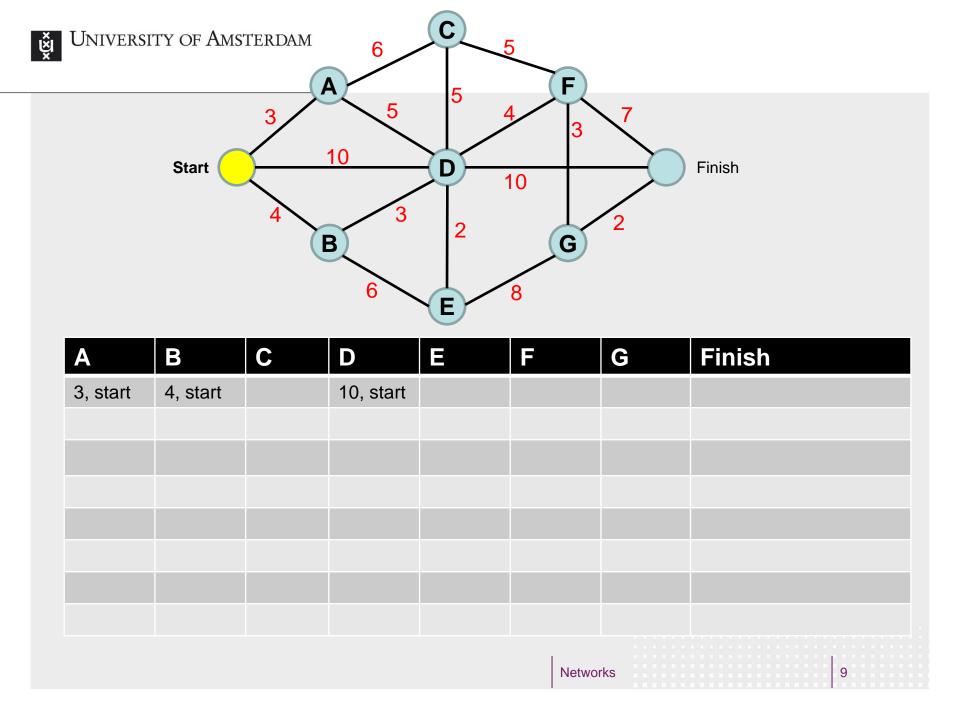
Networks

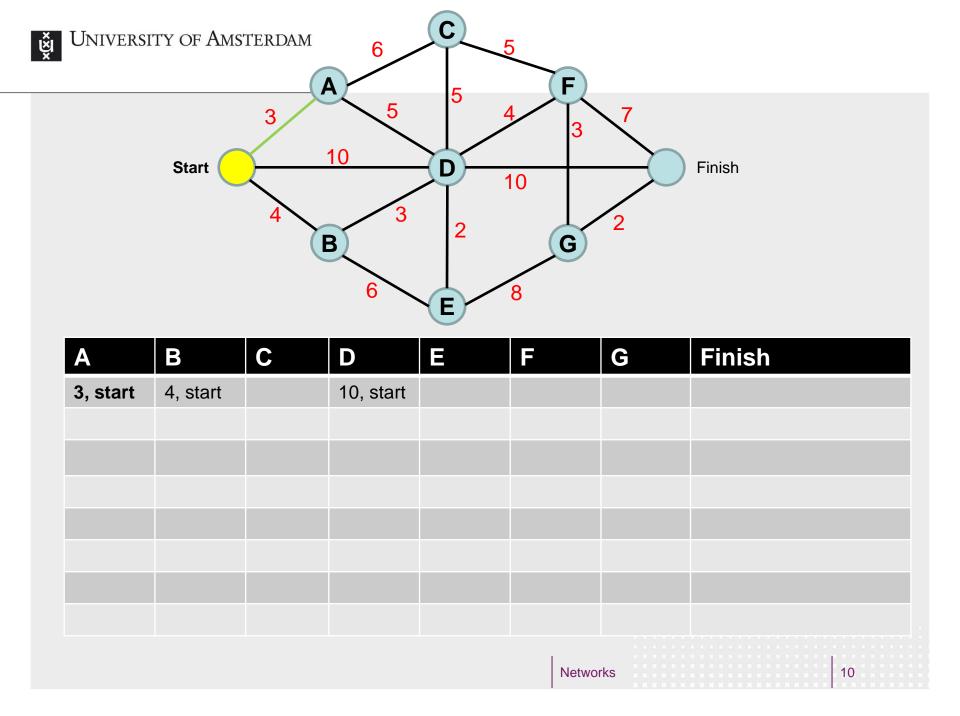

What route should I take to arrive at my destination in time?

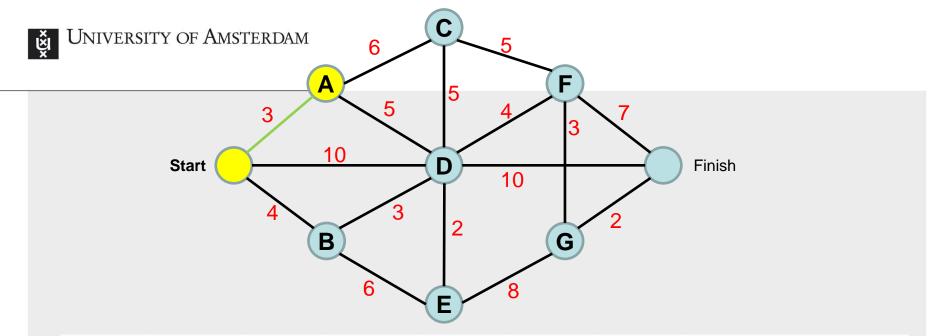
Finding the shortest path can be difficult

University of Amsterdam

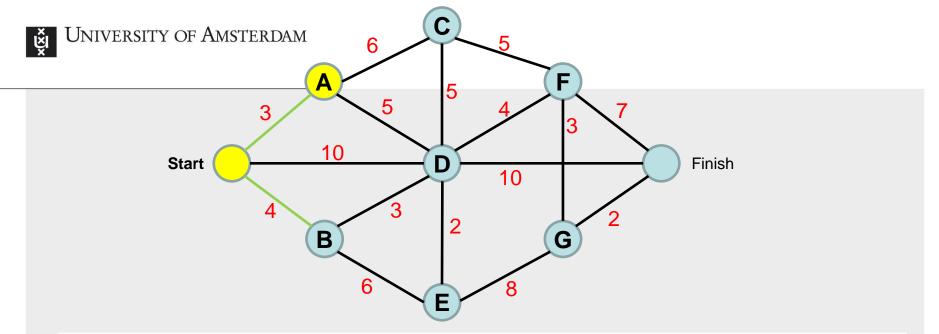

Ň

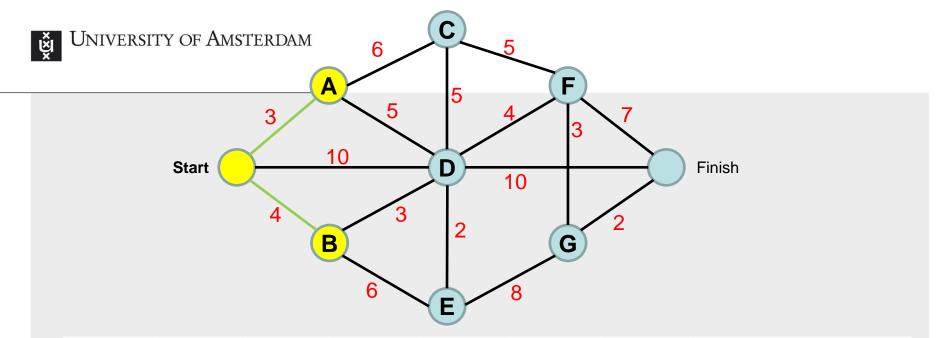



- What is the shortest route from start to finish?
- Dijkstra's algorithm can be used to determine the shortest route in a network

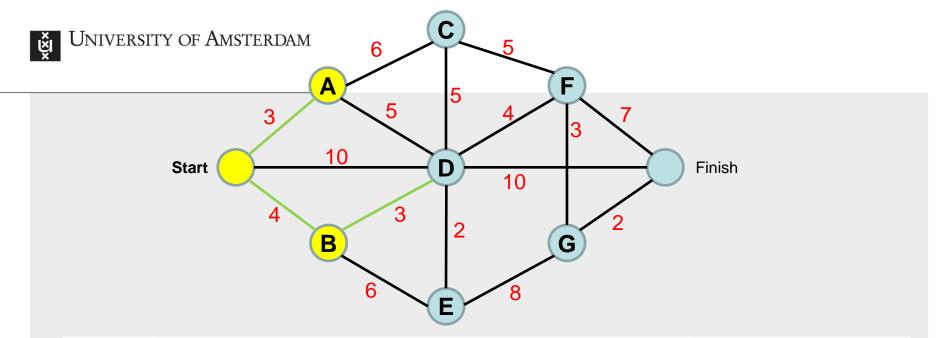


Edsger W. Dijkstra (1930-2002)

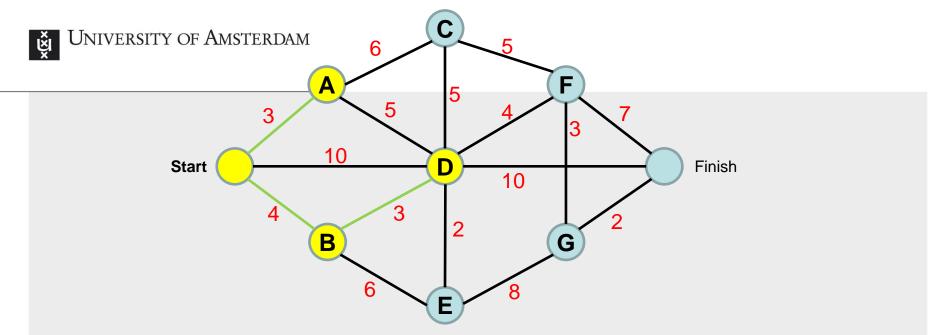


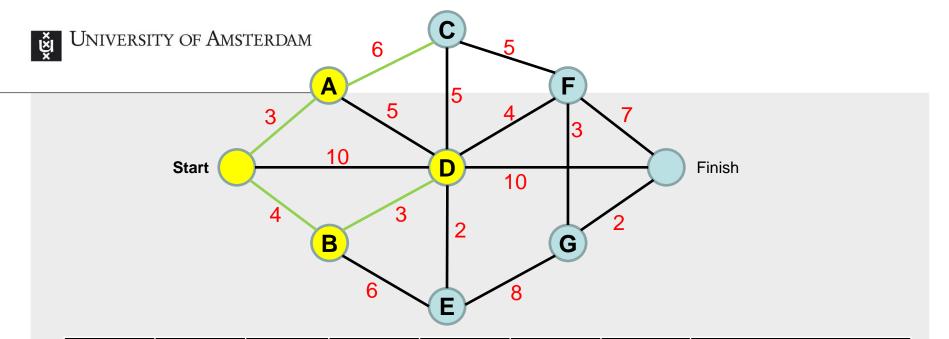


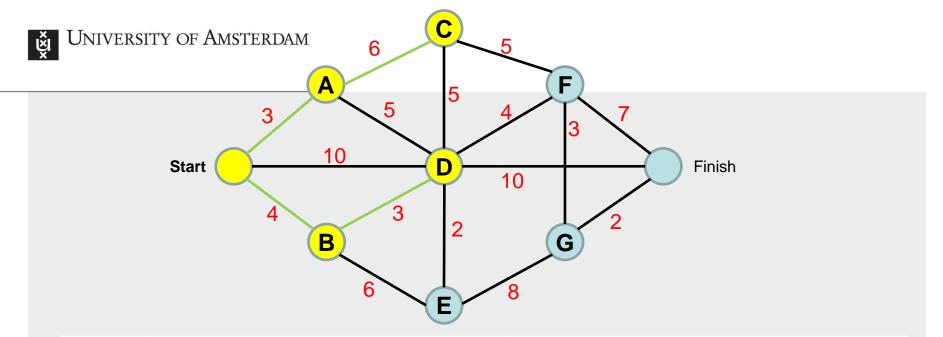
Α	В	С	D	Ε	F	G	Finish			
3, start	4, start		10, start							
*	4, start	9, A	8, A							
*										
*										
*										
*										
*										
*										

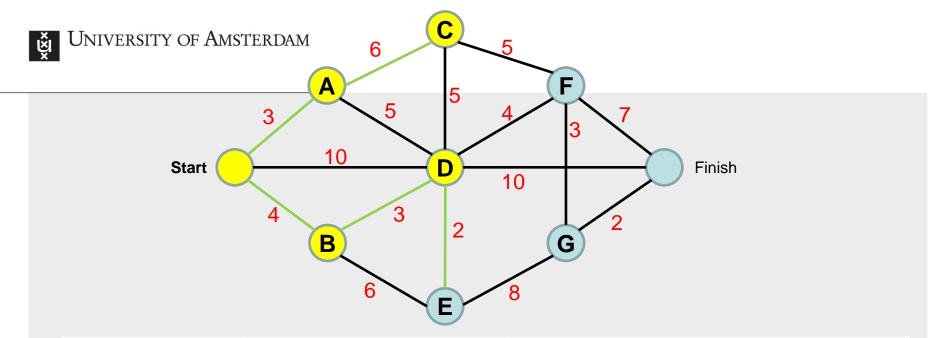


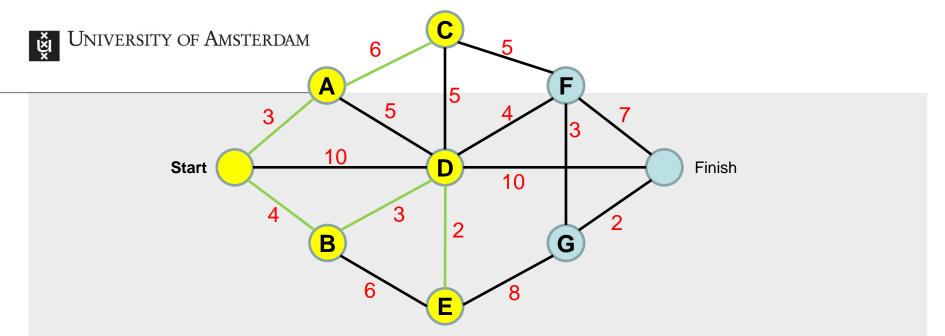
Α	В	С	D	Е	F	G	Finish
3, start	4, start		10, start				
*	4, start	9, A	8, A				
*							
*							
*							
*							
*							
*							
					I		

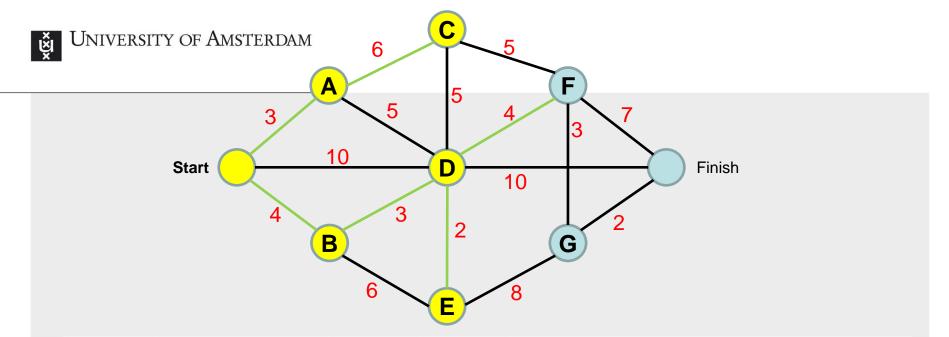


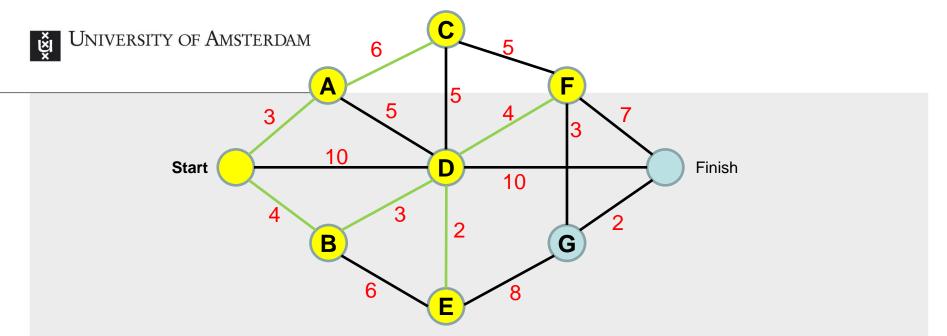

Α	B	С	D	E	F	G	Finish
3, start	4, start		10, start				
*	4, start	9, A	8, A				
*	*	9, A	7, B	10,B			
*	*						
*	*						
*	*						
*	*						
*	*						

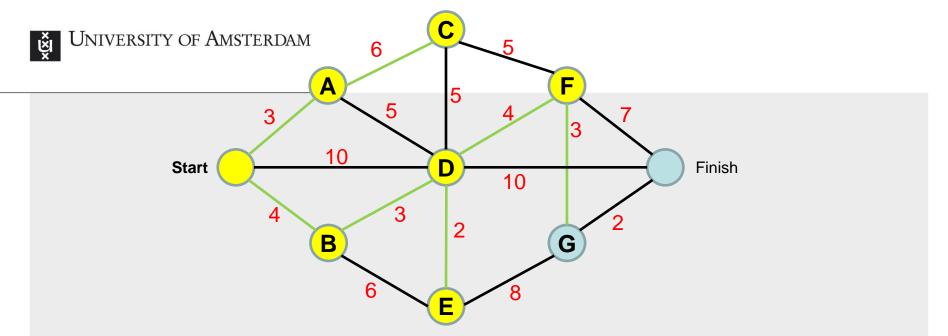

Α		С	D	Ε	F	G	Finish
3, start	4, start		10, start				
*	4, start	9, A	8, A				
*	*	9, A	7, B	10,B			
*	*						
*	*						
*	*						
*	*						
*	*						
					I		

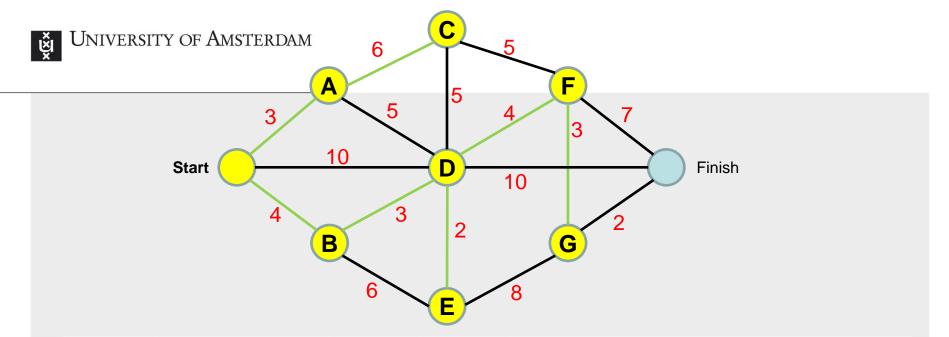

Α		С	D	Е	F	G	Finish
3, start	4, start		10, start				
*	4, start	9, A	8, A				
*	*	9, A	7, B	10,B			
*	*	9, A	*	9, D	11, D		17, D
*	*		*				
*	*		*				
*	*		*				
*	*		*				

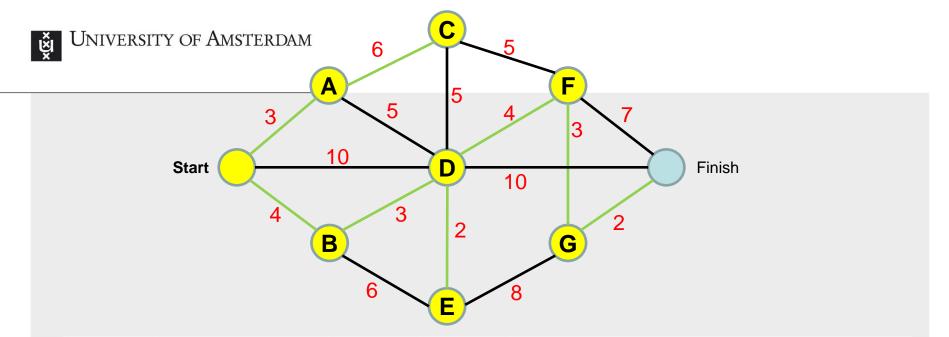

Α	B	С	D	Е	F	G	Finish
3, start	4, start		10, start				
*	4, start	9, A	8, A				
*	*	9, A	7, B	10,B			
*	*	9, A	*	9, D	11, D		17, D
*	*		*				
*	*		*				
*	*		*				
*	*		*				

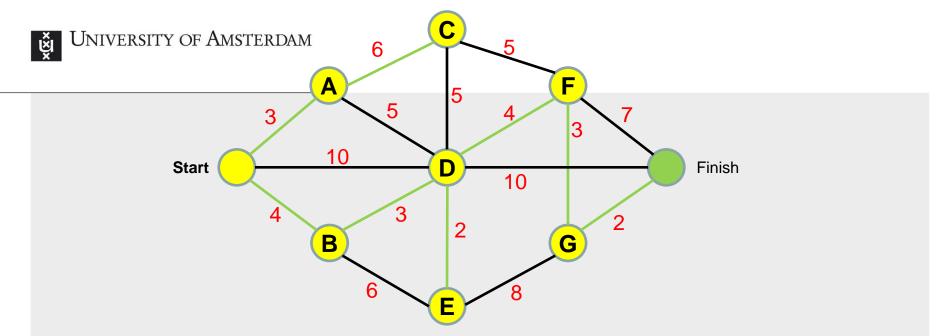

A	B	С	D	Ε	F	G	Finish
3, start	4, start		10, start				
*	4, start	9, A	8, A				
*	*	9, A	7, B	10,B			
*	*	9, A	*	9, D	11, D		17, D
*	*	*	*	9, D	11, D		17, D
*	*	*	*				
*	*	*	*				
*	*	*	*				

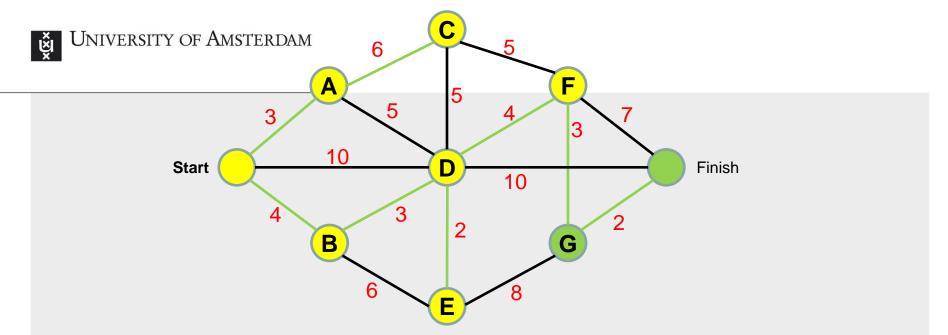

A	B	С	D	Ε	F	G	Finish
3, start	4, start		10, start				
*	4, start	9, A	8, A				
*	*	9, A	7, B	10,B			
*	*	9, A	*	9, D	11, D		17, D
*	*	*	*	9, D	11, D		17, D
*	*	*	*				
*	*	*	*				
*	*	*	*				

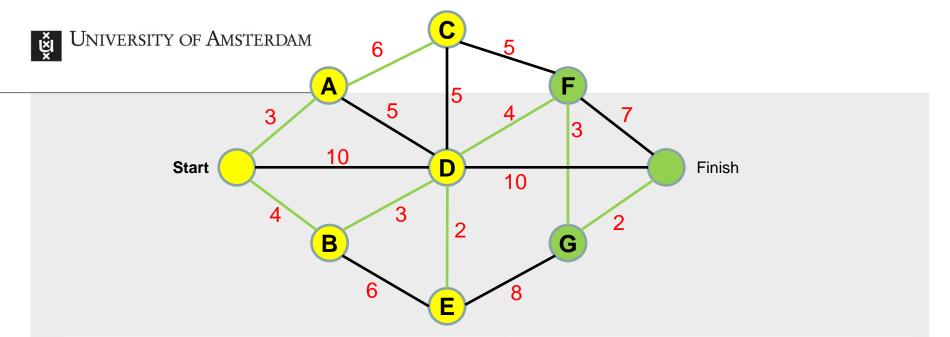

A	B	С	D	Ξ	F	G	Finish
3, start	4, start		10, start				
*	4, start	9, A	8, A				
*	*	9, A	7, B	10,B			
*	*	9, A	*	9, D	11, D		17, D
*	*	*	*	9, D	11, D		17, D
*	*	*	*	*	11, D	17, E	17, D
*	*	*	*	*			
*	*	*	*	*			

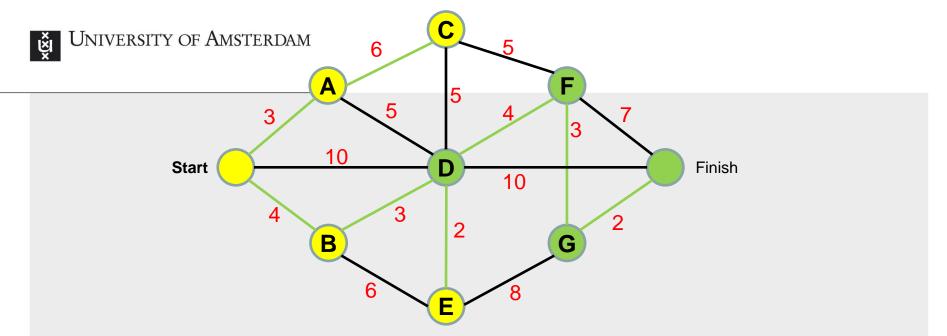

Α	B	С	D	Ξ	F	G	Finish
3, start	4, start		10, start				
*	4, start	9, A	8, A				
*	*	9, A	7, B	10,B			
*	*	9, A	*	9, D	11, D		17, D
*	*	*	*	9, D	11, D		17, D
*	*	*	*	*	11, D	17, E	17, D
*	*	*	*	*			
*	*	*	*	*			

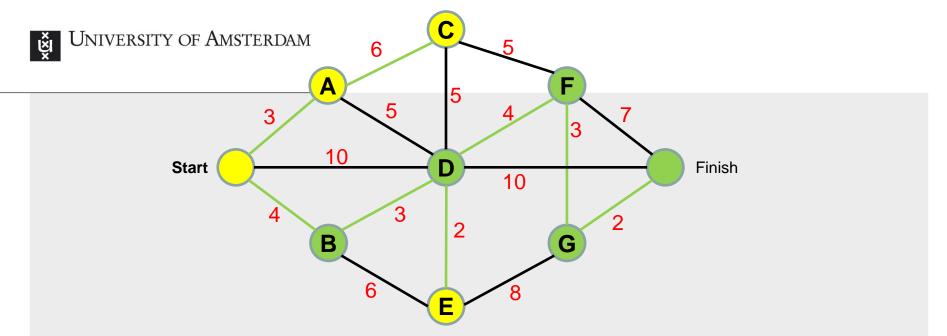

Α	B	С	D	Ξ	F	G	Finish
3, start	4, start		10, start				
*	4, start	9, A	8, A				
*	*	9, A	7, B	10,B			
*	*	9, A	*	9, D	11, D		17, D
*	*	*	*	9, D	11, D		17, D
*	*	*	*	*	11, D	17, E	17, D
*	*	*	*	*	*	14, F	17, D
*	*	*	*	*	*		

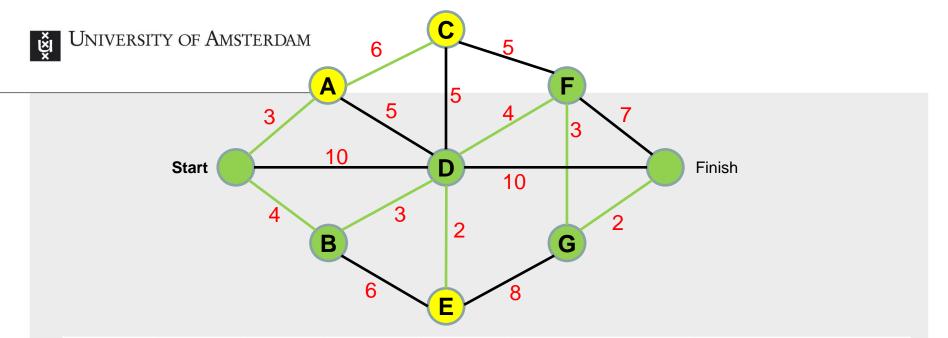

Α	B	С	D	Ξ	F	G	Finish
3, start	4, start		10, start				
*	4, start	9, A	8, A				
*	*	9, A	7, B	10,B			
*	*	9, A	*	9, D	11, D		17, D
*	*	*	*	9, D	11, D		17, D
*	*	*	*	*	11, D	17, E	17, D
*	*	*	*	*	*	14, F	17, D
*	*	*	*	*	*		


A	B	С	D	Ξ	F	G	Finish
3, start	4, start		10, start				
*	4, start	9, A	8, A				
*	*	9, A	7, B	10,B			
*	*	9, A	*	9, D	11, D		17, D
*	*	*	*	9, D	11, D		17, D
*	*	*	*	*	11, D	17, E	17, D
*	*	*	*	*	*	14, F	17, D
*	*	*	*	*	*	*	16, G

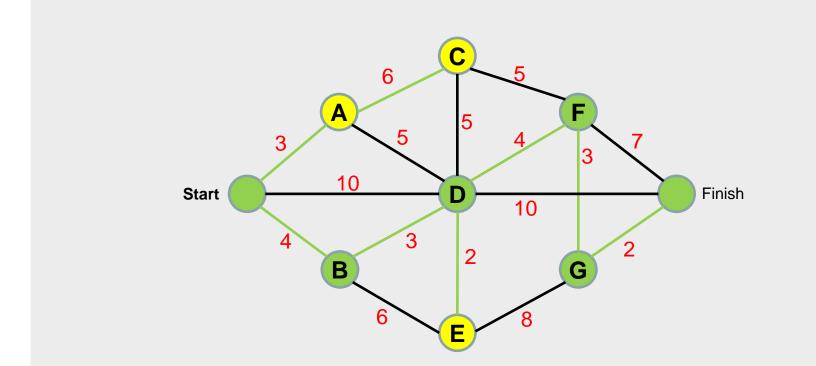

Α	B	С	D	Ξ	F	G	Finish
3, start	4, start		10, start				
*	4, start	9, A	8, A				
*	*	9, A	7, B	10,B			
*	*	9, A	*	9, D	11, D		17, D
*	*	*	*	9, D	11, D		17, D
*	*	*	*	*	11, D	17, E	17, D
*	*	*	*	*	*	14, F	17, D
*	*	*	*	*	*	*	16, G


Α		С	D	Ξ	F	G	Finish
3, start	4, start		10, start				
*	4, start	9, A	8, A				
*	*	9, A	7, B	10,B			
*	*	9, A	*	9, D	11, D		17, D
*	*	*	*	9, D	11, D		17, D
*	*	*	*	*	11, D	17, E	17, D
*	*	*	*	*	*	14, F	17, D
*	*	*	*	*	*	*	16, G


Α	8	С	D	Ξ	F	G	Finish
3, start	4, start		10, start				
*	4, start	9, A	8, A				
*	*	9, A	7, B	10,B			
*	*	9, A	*	9, D	11, D		17, D
*	*	*	*	9, D	11, D		17, D
*	*	*	*	*	11, D	17, E	17, D
*	*	*	*	*	*	14, F	17, D
*	*	*	*	*	*	*	16, G

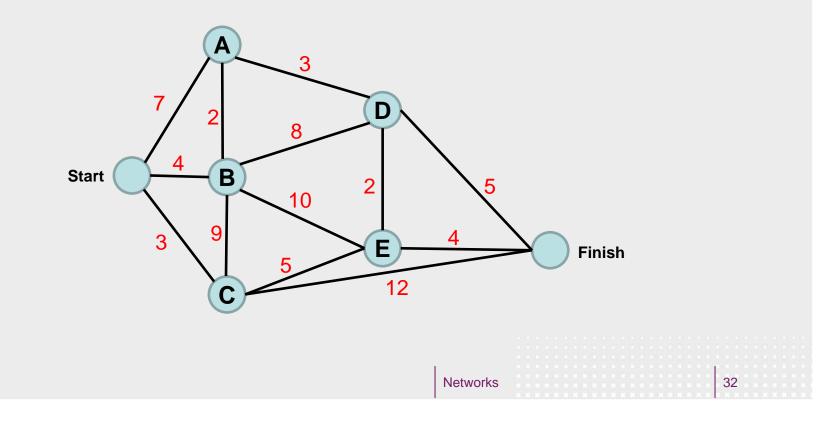

Α	B	С	D	Ξ	F	G	Finish
3, start	4, start		10, start				
*	4, start	9, A	8, A				
*	*	9, A	7, B	10,B			
*	*	9, A	*	9, D	11, D		17, D
*	*	*	*	9, D	11, D		17, D
*	*	*	*	*	11, D	17, E	17, D
*	*	*	*	*	*	14, F	17, D
*	*	*	*	*	*	*	16, G

Α		С	D	Ξ	F	G	Finish
3, start	4, start		10, start				
*	4, start	9, A	8, A				
*	*	9, A	7, B	10,B			
*	*	9, A	*	9, D	11, D		17, D
*	*	*	*	9, D	11, D		17, D
*	*	*	*	*	11, D	17, E	17, D
*	*	*	*	*	*	14, F	17, D
*	*	*	*	*	*	*	16, G

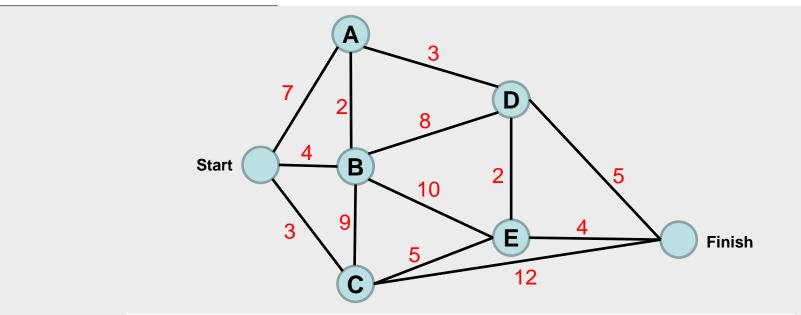


Α		С	D	Ξ	F	G	Finish
3, start	4, start		10, start				
*	4, start	9, A	8, A				
*	*	9, A	7, B	10,B			
*	*	9, A	*	9, D	11, D		17, D
*	*	*	*	9, D	11, D		17, D
*	*	*	*	*	11, D	17, E	17, D
*	*	*	*	*	*	14, F	17, D
*	*	*	*	*	*	*	16, G

Α	B	С	D	Ξ	F	G	Finish
3, start	4, start		10, start				
*	4, start	9, A	8, A				
*	*	9, A	7, B	10,B			
*	*	9, A	*	9, D	11, D		17, D
*	*	*	*	9, D	11, D		17, D
*	*	*	*	*	11, D	17, E	17, D
*	*	*	*	*	*	14, F	17, D
*	*	*	*	*	*	*	16, G

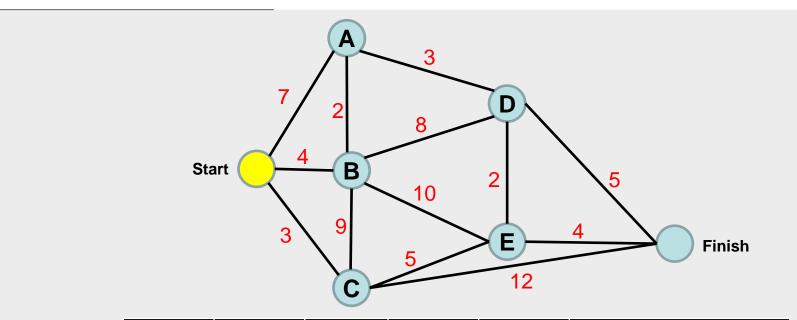


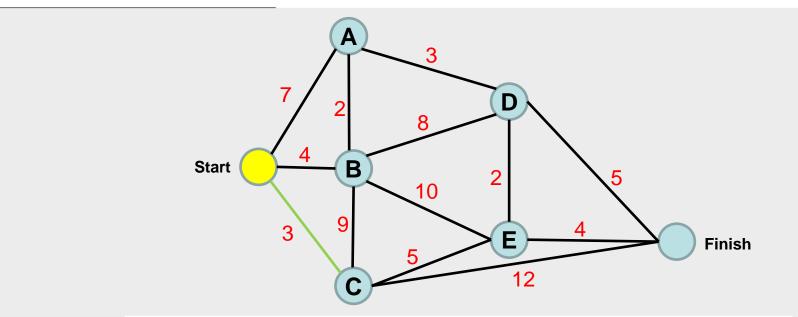
- The shortest route is given by: Start \rightarrow B \rightarrow D \rightarrow F \rightarrow G \rightarrow Finish
- We made a mistake! We actually wanted to travel to node E!

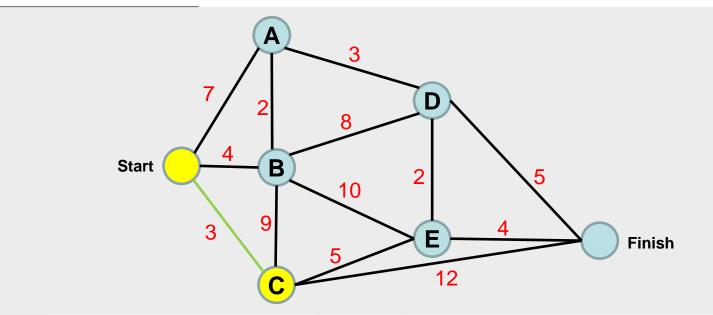


Exercise

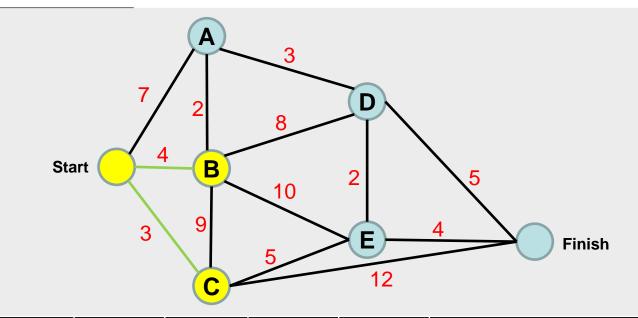
What is the shortest route from start to finish in the following network?

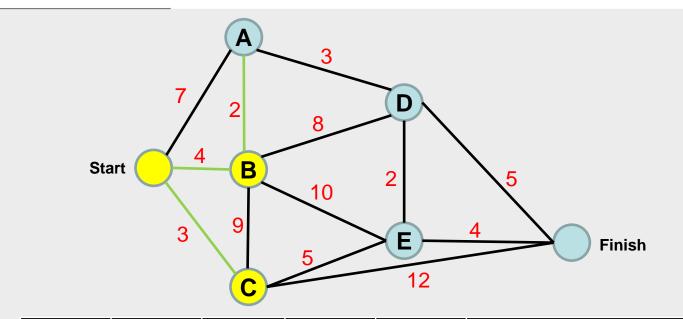


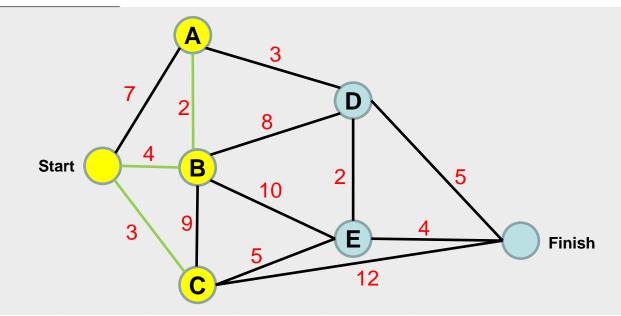

Α	B	С	D	Ε	Finish	
				1		
				Network	S N N N N N N N N N N N N N N N N N N N	33

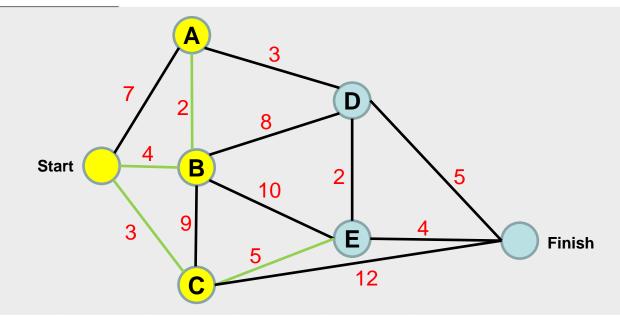

Α	B	С	D	Е	Finish	
7, start	4, start	3, start				
						срежки к к к к
				Network	(S	34

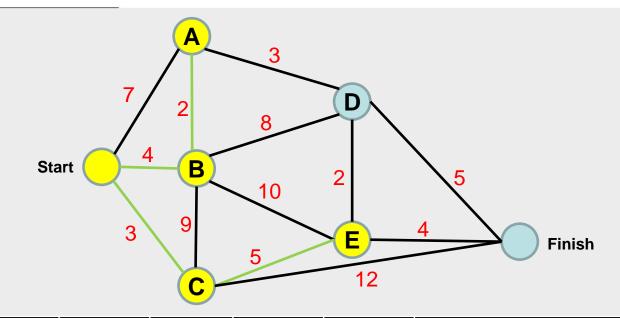
Α	B	С	D	Е	Finish	
7, start	4, start	3, start				
				Network	S	

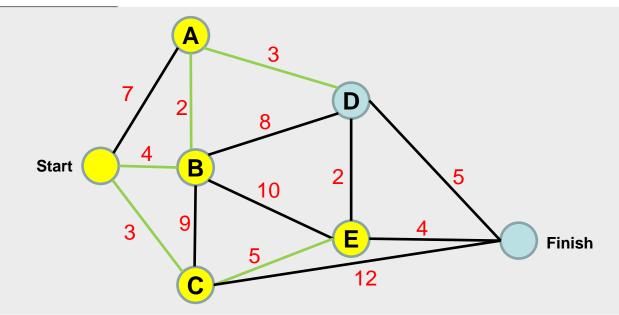

Α	В	С	D	Е	Finish
7, start	4, start	3, start			
7, start	4, start	*		8, C	15, C
		*			
		*			
		*			
		*			
				1	
				Network	KS ************************************

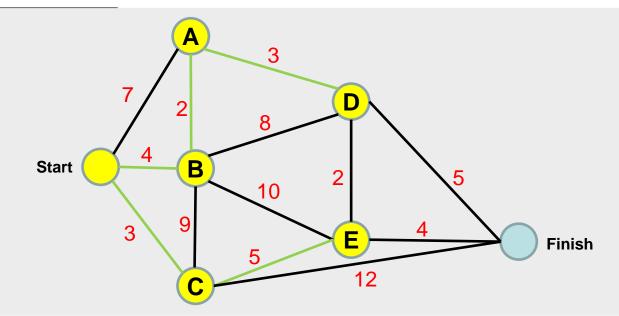

Α	B	С	D	Ε	Finish	
7, start	4, start	3, start				
7, start	4, start	*		8, C	15, C	
		*				
		*				
		*				
		*				
				I		
				Networl	KS	37

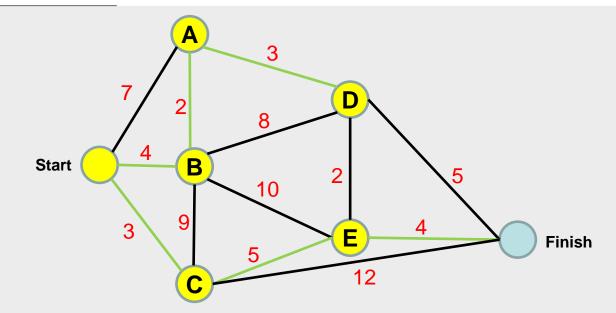

Α	B	С	D	Ε	Finish	
7, start	4, start	3, start				
7, start	4, start	*		8, C	15, C	
6, B	*	*	12, B	8, C	15, C	
	*	*				
	*	*				
	*	*				
				I		
				Networ	ks	38

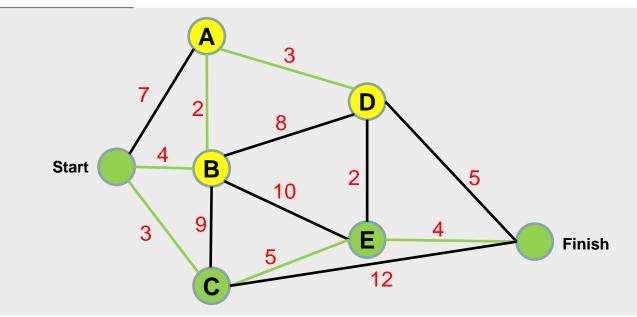

Α	B	С	D	Ε	Finish
7, start	4, start	3, start			
7, start	4, start	*		8, C	15, C
6, B	*	*	12, B	8, C	15, C
	*	*			
	*	*			
	*	*			
				Network	(S

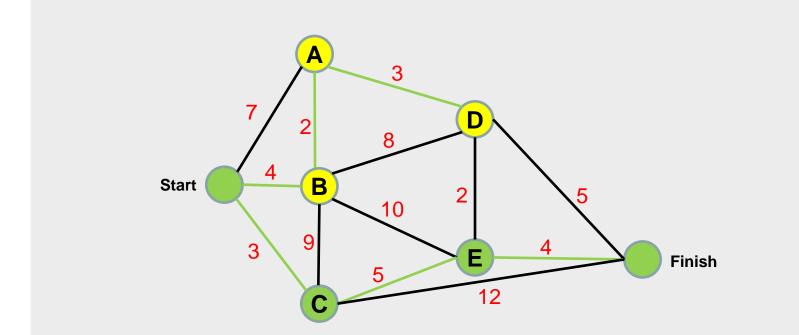

Α	B	С	D	E	Finish
7, start	4, start	3, start			
7, start	4, start	*		8, C	15, C
6, B	*	*	12, B	8, C	15, C
*	*	*	9, A	8, C	15, C
*	*	*			
*	*	*			
				Networ	ks 4


Α	B	С	D	Ε	Finish
7, start	4, start	3, start			
7, start	4, start	*		8, C	15, C
6, B	*	*	12, B	8, C	15, C
*	*	*	9, A	8, C	15, C
*	*	*			
*	*	*			
				Network	


A	B	С	D	Ε		Finish	
7, start	4, start	3, start					
7, start	4, start	*		8, 0	2	15, C	
6, B	*	*	12, B	8, 0	2	15, C	
*	*	*	9, A	8, 0		15, C	
*	*	*	9, A	*		12, E	
*	*	*		*			
					Network	(S	42


A	B	С	D	Ξ	Finish	
7, start	4, start	3, start				
7, start	4, start	*		8, C	15, C	
6, B	*	*	12, B	8, C	15, C	
*	*	*	9, A	8, C	15, C	
*	*	*	9, A	*	12, E	
*	*	*		*		
				Networl	KS	43


A	B	C	D	Ξ	Finish	
7, start	4, start	3, start				
7, start	4, start	*		8, C	15, C	
6, B	*	*	12, B	8, C	15, C	
*	*	*	9, A	8, C	15, C	
*	*	*	9, A	*	12, E	
*	*	*	*	*	12, E	
Networks						

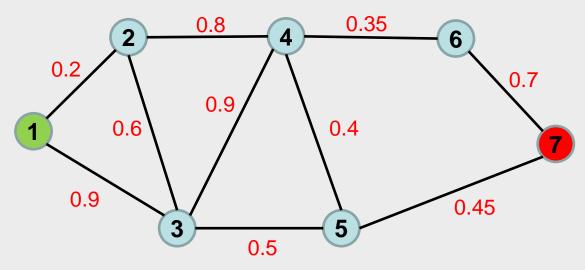

Α	B	С	D	Ξ	Finish	
7, start	4, start	3, start				
7, start	4, start	*		8, C	15, C	
6, B	*	*	12, B	8, C	15, C	
*	*	*	9, A	8, C	15, C	
*	*	*	9, A	*	12, E	
*	*	*	*	*	12, E	
Networks						

A	B	С	D	Ξ	Finish
7, start	4, start	3, start			
7, start	4, start	*		8, C	15, C
6, B	*	*	12, B	8, C	15, C
*	*	*	9, A	8, C	15, C
*	*	*	9, A	*	12, E
*	*	*	*	*	12, E
				Network	S

• The shortest route is given by: Start \rightarrow C \rightarrow E \rightarrow Finish

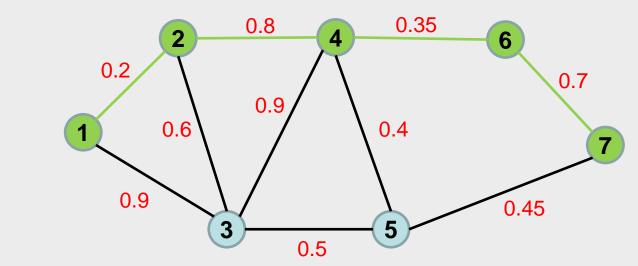
Ten-minute break

Networks


Introducing uncertainty

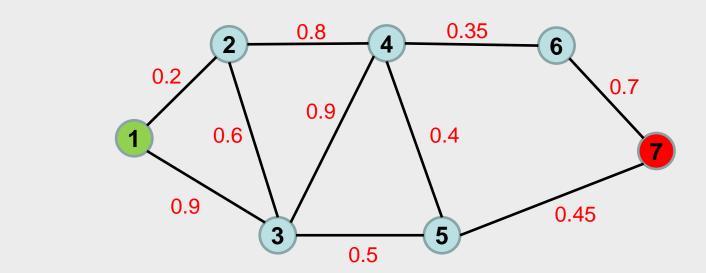
- So far, we have only been interested in finding the shortest route
- Perhaps there are routes other than the shortest route that are 'better'
- The shortest route would not be a very desireable route if it is likely to suffer from traffic jams...

Introducing uncertainty


 Finding the route from 1 to 7 that has the lowest probability of getting stuck in a traffic jam

The numbers denote the probability of not getting stuck in a traffic jam

Networks

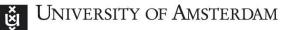


• Consider the route $1 \rightarrow 2 \rightarrow 4 \rightarrow 6 \rightarrow 7$

- The probability of not getting stuck in a traffic jam is $p_{17} = p_{12} \times p_{24} \times p_{46} \times p_{67}$
- So, $p_{17} = 0.2 \times 0.8 \times 0.35 \times 0.7 \approx 0.04$
- Can we directly apply Dijkstra's algorithm to find the 'most-reliable' route?

- Note that we want to maximise a product
- We need to find a way to rewrite our problem such that is becomes a problem of mimimising a sum

Networks

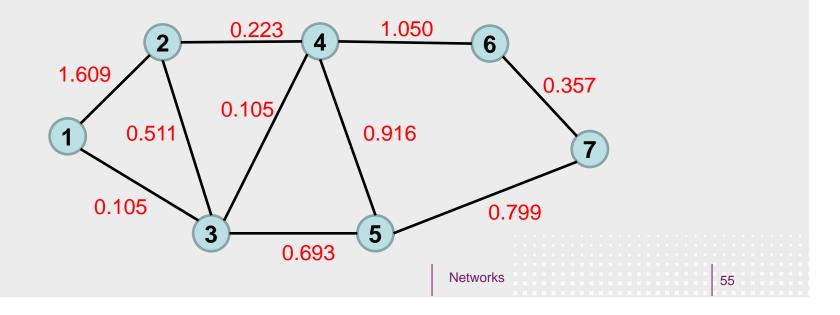

Applying Dijkstra in a non-standard setting

- Recall that log(xy) = log(x) + log(y)
- Therefore, $log(p_{17}) = log(p_{12}) + log(p_{24}) + log(p_{46}) + log(p_{67})$
- But we are interested in the route that maximises p₁₇, not the route that maximises the log of p₁₇
- Note that the logarithm is a strictly increasing function

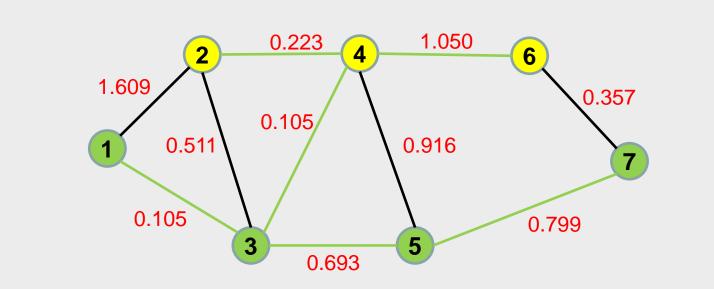
Networks

53

Why is this important?

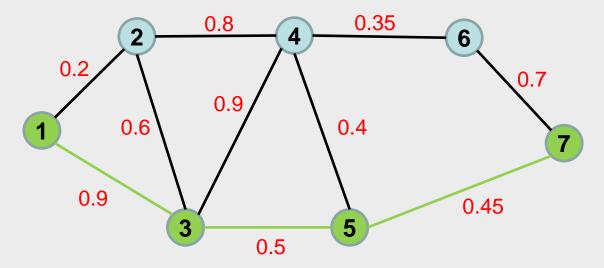

Applying Dijkstra in a non-standard setting

- Recall that Dijkstra's algorithm minimises a sum, but we want to maximise a sum
- We can make use of the following trick: The route that maximises log(p₁₇) will minimise -log(p₁₇)
- Conclusion: We can use Dijkstra to find the route that minimises - log(p₁₇) and this is the route we are interested in finding



Exercise

- Find the route that minimises the probability of getting stuck in a traffic jam
- We have already applied the –log transformation for you:



nodes	2	3	4	5	6	7
Step 1	(1.609, 1)	$(0.105, 1)^*$	No edge	No edge	No edge	No edge
Step 2	(0.616, 3)	-	$(0.210, 3)^*$	(0.798, 3)	No edge	No edge
Step 3	$(0.433, 4)^*$	-	-	(0.798, 3)	(1.260, 4)	No edge
Step 4	-	-	-	$(0.798, 3)^*$	(1.260, 4)	No edge
Step 5	-	-	-	-	$(1.260, 4)^*$	(1.597, 5)
Step 6	-	-	-	-	-	$(1.597, 5)^*$

Table 2.2.1. Dijkstra's shortest route algorithm for the network in Figure 2.2.2. Networks

• The path that minimises $-\log(p_{17})$, maximises p_{17}

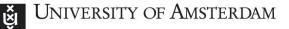
We conclude that we found a route such that the probability of not getting stuck in a traffic jam is p₁₇ = 0.9 × 0.5 × 0.45 ≈ 0.20

Networks

Refinements

- Up to now, we have considered two extremes
 - The shortest route, not taking into account the reliability of the route
 - The most reliable route, not taking into account the length of the route

Networks


58

We would like to find a route that is both quick and reliable...

Travel times as random variable

- Instead of distances, we are now going to work with travel times
- Travel times can be uncertain for many reasons
- It makes sense to model the travel times as random variables
- We will assume the travel times are normally distributed
 Networks

The density of a normally distributed r.v.

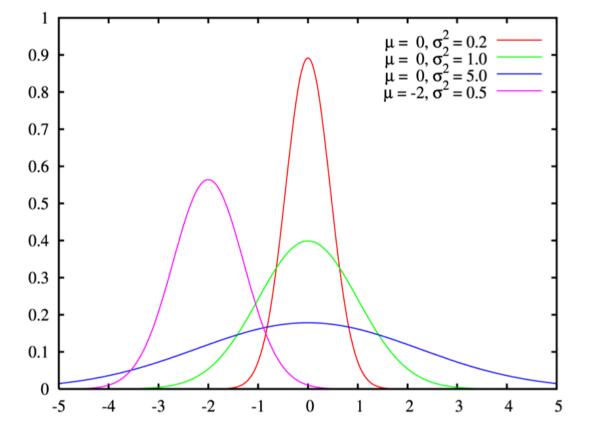
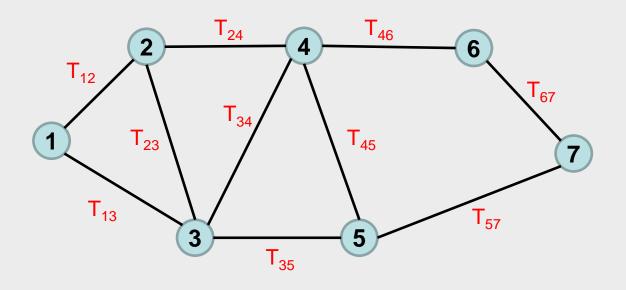



Figure 1.2.1. The density function of a normally distributed random variable with parameters μ and σ^2 . Networks

A road travel network with stochastic travel times

- The travel times T_{ij} have a mean and a variance
- Suppose that T₁₃ has mean 15 and variance 4
- Suppose that T₁₂ has mean 12 and variance 16 Networks

Ň

Quiz time!

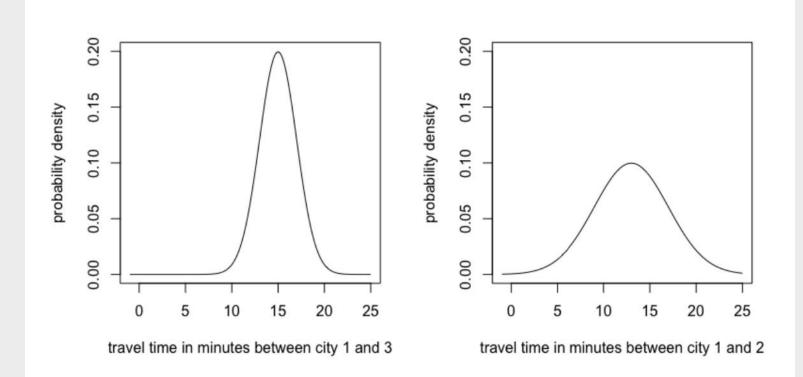


Figure 2.2.4. The density of $T_{13} \sim \mathcal{N}(15,4)$ (left) and $T_{12} \sim \mathcal{N}(12,16)$ (right).

Networks		

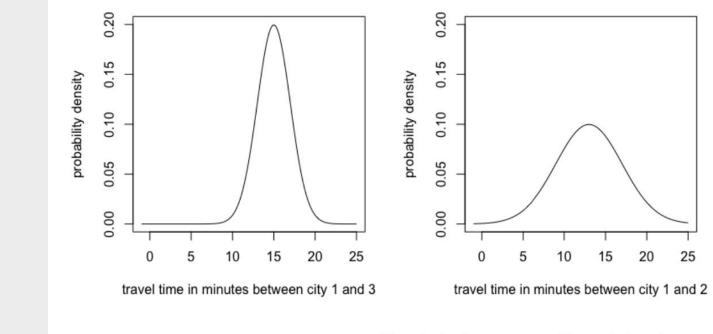
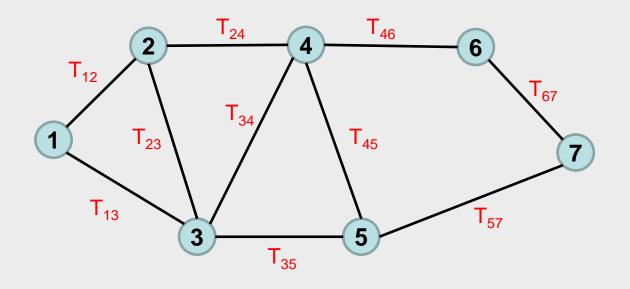


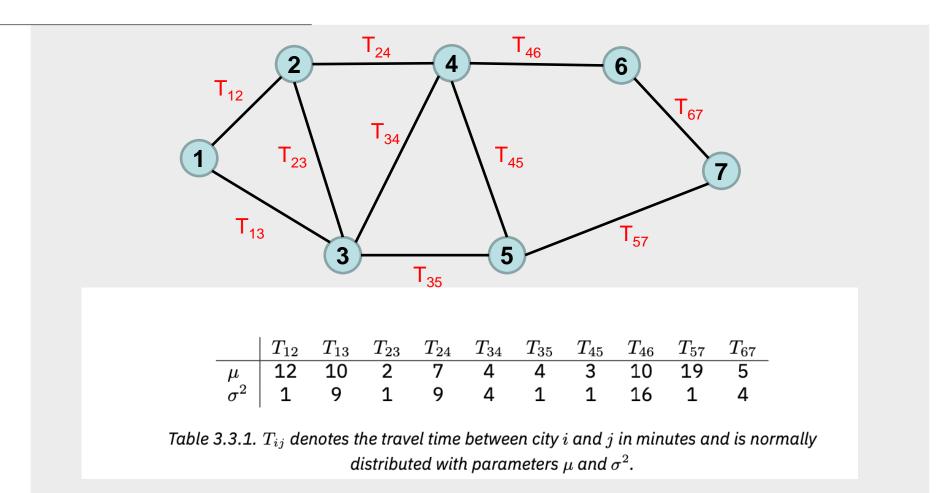
Figure 2.2.4. The density of $T_{13} \sim \mathcal{N}(15, 4)$ (left) and $T_{12} \sim \mathcal{N}(12, 16)$ (right).

- The travel time to the left has a higher mean, so it is expected to be faster
- The travel time to the right has a higher variance, so it is less reliable

Networks

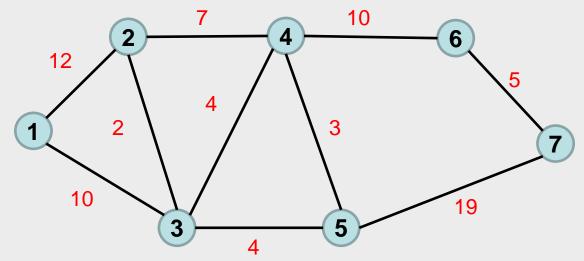

Ten-minute break

Networks


A road travel network with stochastic travel times

• The travel times T_{ij} have a mean and a variance

Networks



 We can easily find the route with the lowest expected travel time by applying Dijkstra

Networks

University of Amsterdam

Simply replace each random variable T_{ij} by its mean

Animation!

■ The path with shortest expected travel time is $1 \rightarrow 3 \rightarrow 4 \rightarrow 6 \rightarrow 7$

Networks

Arriving in time

- We have seen that we are able to determine the route with the lowest expected travel time
- It may make more sense to find the route that maximises the probability of arriving at your destination in time
- This could be a different route!

Computing probabilities

We have argued that T₁₂ (which has mean 12 and variance 16) is expected to be a quicker road piece to traverse compared to T₁₃, but it is also less reliable

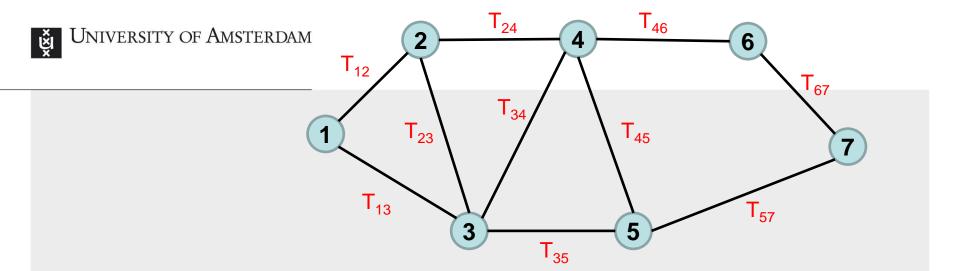
• Lets compute
$$P(T_{12} < 20)$$
:

•
$$P(T_{12} < 20) = P(\frac{T_{12} - 12}{\sqrt{16}} < \frac{20 - 12}{\sqrt{16}})$$

■ Since $\frac{20-12}{\sqrt{16}} = 2.00$, the table on page 50 of your booklet tells us that P(T₁₂ < 20) ≈ 0.9772

Quiz

- Compute $P(T_{13} < 20)$
- Recall that T₁₃ has mean 15 and variance 4. Use the table on page 50 in your booklet


Random variables compared

- We have found that □ $P(T_{12} < 20) \approx 0.9772$ □ $P(T_{13} < 20) \approx 0.9938$
- It is remarkable that the road piece connecting 1 and 2 is less likely to be traversed within 20 minutes, while this road piece has a lower expected travel time!

From road pieces to routes

- This idea can be pushed further
- Instead of road pieces, we may also find the route that maximises the probability of arriving on time
- This route may be different than the route that minimises the expected travel time we have determined before

■ Recall that the route with the lowest expected travel time is $1 \rightarrow 3 \rightarrow 4 \rightarrow 6 \rightarrow 7$. What is the probability you arrive at your destination within 40 minutes? Also compute this probability for the route $1 \rightarrow 3 \rightarrow 5 \rightarrow 7$. Use the hint.

	T_{12}	T_{13}	T_{23}	T_{24}	T_{34}	T_{35}	T_{45}	T_{46}	T_{57}	T_{67}
μ	12	10	2	7	4	4 1	3	10	19	5
σ^2	1	9	1	9	4	1	1	16	1	4

Table 3.3.1. T_{ij} denotes the travel time between city *i* and *j* in minutes and is normally distributed with parameters μ and σ^2 .

Hint

Recall that the travel times are independent across the different roads. You can use that if $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ are independent, it holds that $X + Y \sim \mathcal{N}(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$.

- Note that the route $1 \rightarrow 3 \rightarrow 4 \rightarrow 6 \rightarrow 7$ has mean 29 and variance 33
- This gives $P(T_{17} < 40) \approx 0.9719$
- The route $1 \rightarrow 3 \rightarrow 5 \rightarrow 7$ has mean 33 and variance 11
- This gives $P(T_{17} < 40) \approx 0.9826$
- The latter route has a higher probability of arriving in time!
- We can also use Dijkstra's algorithm to find fast and reliable routes!

Networks

Concluding remarks

- Dijkstra's algorithm is a very useful tool to find paths that minimise a certain quantity on a network
- Modelling travel times as random variables allows us to find quick routes, while also taking the reliability of the routes into account
- Routes with the lowest expected travel times, are not necessarily optimal!

Thank you!

Networks

