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INTRODUCTION
Transportation, traffic, communication and energy networks form the backbone of our mod-

ern society. To deal with the uncertainty, variation, unpredictability, size and complexity

inherent in these networks, we need to develop radically new ways of thinking. The ulti-

mate goal is to build self-organising and intelligent networks. The NWO-funded Gravitation

programme NETWORKS started in the Summer of 2014 and covers a broad range of topics

dealing with stochastic and algorithmic aspects of networks.

In fall 2024 the fifth “NETWORKS goes to school” event was organised. The aim of the

event is to provide secondary education students and teachers a first mathematical intro-

duction on network science. This book collects the material realised for the “NETWORKS

goes to school” event. This year the theme of the masterclass is Game Theory, a modern

discipline which is very important in economics and mathematics. Techniques from math-

ematical modelling, probability theory, functions, networks, algorithms come together in

this field where researchers try to understand how ”good” decisions can be made.

In Chapter 1, all the necessary background material that is required for Chapters 2

and 3 is presented. In Chapter 2, we introduce queueing theory by showing how to model

and analyse a queue with mathematical techniques. In this chapter, we show how mathem-

atical models of real life applications can be made. We show how concepts from game the-

ory can be applied to make decisions about queues. Chapter 3 focuses on road traffic net-

works, and discusses how we can use concepts from game theory to optimize road traffic.

Chapter 4 contains exercises on these two topics and in Chapter 5 we provide the corres-

ponding solutions. Chapters 2, 3, 4, and 5 were written with the help of Artem Tsikiridis

(Centrum Wiskunde en Informatica, Amsterdam) and Jiesen Wang (University of Amster-

dam).

For more information and the booklets of the first four masterclasses “NETWORKS

goes to school”, please visit https://onderwijs.networkpages.nl/masterclass/. This master-

class is sponsored by the Netherlands Organisation for Scientific Research (NWO) through

the Gravitation grant ”NETWORKS”, and by the European Union’s Horizon 2020 research

and innovation programme under the Marie Skłodowska-Curie grant no. 945045.

On behalf of the NETWORKS programme,

the organising committee of “NETWORKS goes to school”

Koen van den Berk (Eindhoven University of Technology)

Nicos Starreveld (University of Amsterdam)
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Chapter 1

Preliminaries

1.1. Basic notation
We start by introducing some notation we will use in the sequel:

(1) N for the set of natural numbers, that is N = {1, 2, 3, · · · };
(2) Z for the set of integer numbers, that is Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }.
(3) R for the set of real numbers, that is all integer numbers and all the decimal numbers

between them.

(4) We will use the symbol≤ when we want to say “less or equal to”. For example, a ≤ b

means that a is less or equal to b.

(5) We will use the symbol≈ when we want to say “ almost equal to”. For example. π ≈
3.14159.

(6) We will use the symbol de for the ceiling of a number, which is the largest integer
number of that number. For example d2.5e = 3, and d4.1e = 5.

(7) The number of elements in some set A is denoted by |A|.
(8) We will use the notationmax andmin for the maximum and minimum value in some

set or of some function. For example

max
i∈{1,2,3}

i2 = 9 and min
j∈{−1,0,1}

(i+ 1) = 0.

(9) You are familiar with functions of one variable, like the function f given by f(x) = x2.

We will also see functions of functions. For instance, we know that the y-intercept

(the place where a function meets the y-axis) of the function f is its value at x = 0, so

f(0). We could define the function y-intercept as

y-intercept(f) = f(0),

for any function f .
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On sums
Mathematicians always want to write down mathematics as compactly as possible. But

the notation used should also be clear and representative of what it describes. The typical

notation you encounter when doing mathematics involves the symbol used for summation:∑
. Below we show how

∑
is used to describe a sum. Suppose you want to use the sum-

mation symbol to describe the sum 1 + 2 + 3 + 4 + 5 + 6, then you can write this down

compactly as

6∑
k=1

k = 1 + 2 + 3 + 4 + 5 + 6 = 21. (1.1.1)

The advantage of this notation is that you can write down large sums very compactly. For

example, if you want the sum of the first 100 natural numbers, instead of only up to 6, then

you can write this down as
100∑
k=1

k. (1.1.2)

By playing with the value at which the sum starts or ends you see that you can represent

many sums or products using this notation. The general notation is the following:

n∑
k=m

ak, (1.1.3)

where k is the index of summation; ak are indexed variables representing each term of the

sum;m is the lower bound of summation, and n is the upper bounds of summation.

In all the expressions above, either of summations or products, you can remark that the

index k in every step increases by one, it starts from a numberm, then takes the valuem +

1,m + 2 until it reaches the number n. It is also possible to choose the indices from some

set of values. Say for example that you want to compute the sum of the squares of all even

numbers greater or equal to 4 and less or equal to 20. You can define the set of indexes you

want to sum over, in this case

I = {N ∈ N : 4 ≤ N ≤ 20 andN is even} = {4, 6, 8, 10, 12, 14, 16, 18, 20}.

Then the desired sum can be written as∑
k∈I

k2 = 16 + 36 + 64 + 100 + 144 + 296 + 324 + 400 = 1380.

This sum could also be written compactly as follows∑
k∈I

k2 =
∑

4≤k≤20, k even

k2.

For two quantities x and y, we say x is a lower bound for y if x ≤ y. Similarly, we say x is an

upper bound for y if x ≥ y.
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1.2. Probability theory
Probability theory is the area of mathematics that studies random phenomena. For

example if the experiment is tossing a coin, then there are two possible outcomes, either

heads or tails. Each outcome occurs with probability 0.5. In order to study such a random

experiment we use random variables.

Random variable

A random variableX is a variable whose possible values are outcomes of a random

experiment. We will also use the term stochastic as a synonym for random.

We define a random variable by giving the state space, i.e. the set of all possible values

the variable can take, and the probability function, which yields the corresponding probab-

ility that a given outcome will occur. For the coin toss for example we can define a random

variable by assigning to the outcome heads the value 1 and to the outcome tails the value 0.

In this case we have

X =

1 if the outcome is heads,

0 if the outcome is tails.

The probability function for this random variable is given by

P(X = 1) = P(heads) = 0.5,

and

P(X = 0) = P(tails) = 0.5,

where for a possible set of outcomes A, P(A) denotes the probability that A occurs. A ran-

dom variable can be discrete or continuous.

Discrete random variables

A random variableX is called discrete when it can take countable many values, for

simplicity we can just say that its values are the integer numbers, that isX ∈ Z.

Continuous random variables

A random variableX is called continuous when it can take continuously many val-

ues, for simplicity we can just say that its values are the real numbers that isX ∈ R.

For a discrete random variable, we can write down the probability that it equals a spe-

cific value. For a continuous random variable, this is not possible, as there is a continuum of
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possible values. We can however specify the probability that a continuous random variable

falls in a range of values by using the density function. The probability that a continuous

random variable X assumes values in the interval [a, b] is given by the integral of the density

function, denoted by fX , over that interval:∫ b

a

fX(x)dx = P(X ∈ [a, b]).

The result of this integration gives the area delimited by the graph of the density function

fX , the x-axis and the vertical lines given by x = a and x = b.

Integrals: If you are not familiar with integration don’t worry, you won’t need it in Chapters

2 and 3. We present it here to give a complete picture and to show that they are very im-

portant in probability theory.

Expectation of a random variable

For a random variableX, discrete or continuous, we define the expectation, or ex-

pected value, as the average of all independent realisations of the random variable.

We denote the expectation ofX by E[X].

For a discrete random variable its expectation is defined by

E[X] =

∞∑
k=0

kP(X = k). (1.2.1)

For a continuous random variable its expectation is defined by

E[X] =

∫ ∞

−∞
xfX(x)dx, (1.2.2)

where fX denotes the density function of the random variable, this means that

fX(x)dx = P(X ∈ dx). (1.2.3)

As we will see in the sequel, if the random variable takes only positive values then the in-

tegral in the expectation starts from 0 instead of−∞.

Bernoulli random variable

Bernoulli random variable

A Bernoulli random variable describes the outcome of any single random experi-

ment that asks a yes-no question, like tossing a coin.
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It takes the value 1 with probability p and the value 0 with probability 1 − p. Consider for

example a coin where one side is heavier, then this is a biased coin where one side is fa-

voured. We will use B(p) to denote a Bernoulli random variable with probability p. A Bernoulli

random variable has expectation given by

E[B(p)] = 1 · P(B(p) = 1) + 0 · P(B(p) = 0) = p. (1.2.4)

1.2.1. Geometric random variable

Geometric random variable

A geometric random variable describes the number of failures in a sequence of

random experiments, each asking a yes-no question, until the first success.

We make the following assumptions:

• each observation is independent of the other observations;

• each observation represents one of two outcomes: success or failure;

• the probability p of success is exactly the same for each trial.

Under these assumptions, we can describe each geometric distribution by using the para-

meter p, we will denote a geometric random variable byG(p). The geometric random vari-

able has state space {0, 1, 2, . . .}, and the probability thatG(p) is equal to k is given by

P(G(p) = k) = (1− p)kp.

When the random variableG(p) is equal to k then we know that k failures have oc-

curred before the first success. The probability of a failure is equal to 1 − p and by the as-

sumptions above the experiments we perform are independent of each other. The geomet-

ric random variable has expectation equal to

E[G(p)] =

∞∑
k=0

kP(G(p) = k) =

∞∑
k=0

k(1− p)kp =
1− p

p
. (1.2.5)

Again the exact derivation of the formula is far away from the scope of this booklet. For

some more details on this formula we refer to Exercise 2.

EXAMPLE 1.2.1. Consider a coin toss, where possible outcomes are heads or tails. Sup-

pose that we have an unfair coin, i.e., the probability for heads is 1
3
and the probability for

tails is 2
3
. Then the probability to get five times tails before the first heads is equal to

P
(
G

(
1

3

)
= 5

)
=

(
2

3

)5
1

3
≈ 0.044.
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1.2.2. Exponential random variable
Exponential random variable

The exponential random variable is a continuous random variable and describes

the time elapsed between events that occur continuously and independently at a

constant intensity.

An exponential random variable is characterised by a parameter λ, called the intensity. The

larger this parameter is the higher the frequency of the arriving events. A random variable

having the exponential distribution with parameter λ, denoted by E(λ), has the following

probability distribution function

P(E(λ) ≤ x) = 1− e−λx, x ≥ 0, (1.2.6)

and a probability density function given by

fλ(x) = λe−λx, x ≥ 0. (1.2.7)

The expectation of the exponential random variable is equal to

E[E(λ)] =

∫ ∞

0

xfE(λ)(x)dx =

∫ ∞

0

xλe−λx
dx =

1

λ
. (1.2.8)

The exponential random variable has thememoryless property, i.e. that means that

P(E(λ) > x+ y|E(λ) > y) = P(E(λ) > x), x, y ≥ 0. (1.2.9)

The probability on the left-hand side in the equation above is called a conditional probab-

ility. The symbol | is read as ” given that”, we will not need this concept during the master-
class but in general it is a very important concept in probability theory. For more details we

refer to Exercise 1. This memoryless property is quite remarkable, so let’s look at it from

a practical side. Suppose the time until the bus arrives is exponentially distributed. If that

would be the case, then if the bus didn’t arrive for an hour, then it would still take the same

amount of time until the bus arrives. But in reality we expect that if the bus didn’t arrive for

an hour, then it will probably arrive soon.

1.2.3. Poisson process
Finally, we introduce the Poisson process. This represents a sequence of events where

events happen once every while. The time between events is exponentially distributed.

Since the exponential distribution is memoryless, the Poisson process has a very remark-

able property. If no event happened for a while, it doesn’t imply that some event will occur

soon. As an example, consider the time until you hit a specific number on a roulette wheel.

If that specific number didn’t show up for a while, that doesn’t make it more likely for the

number to show up sooner than normal. In other words: the history of the process has no

influence on the future.
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1.3. Graph theory

An intuitive definition of a network would be a ‘collection of objects that are interconnected

in some way’. Think for example of a collection of people, who can be interconnected by

friendships; or a collection of cities, which can be interconnected by roads. To make this

idea precise, we turn to graph theory.

Graph

An (undirected) graph is a pairG = (V,E), where

• V is the set of nodes or vertices;

• E is the set of edges, connecting the nodes.

Typically, we number the nodes from {1, 2, 3, . . . , }. We denote an edge between two nodes
i and j by {i, j}. To define a graph, we can write down the sets V and E.

EXAMPLE 1.3.1. Consider

V = {1, 2, 3, 4, 5, 6}, E = {{1, 2}, {1, 5}, {2, 3}, {2, 5}, {3, 4}, {4, 5}, {4, 6}}.

ThenG = (V,E) is a graph with six nodes and seven edges.

It may be very useful to have a graphical representation of a graph. We do this by typically

drawing nodes as a circle with a label in it, and edges as a line between nodes. However,

you are free to choose any representation you may like! In fact, the location of the nodes is

also arbitrary, it only matters the way in which the edges connect the nodes together.

EXAMPLE 1.3.1 (Continued). In Figure 1.3.1 we see two ways in which the graphG can be

drawn.

6

4

5 1

23

2 3

5 4 6

1

Figure 1.3.1. Two different representations of the graph in Example 1.3.1.
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Degree of a node in a graph

The degree of a node v in a graphG = (V,E), denoted by d(v), is the number of

neighbors of v. In the graph above for example the degree of node 1 is d(1) = 2, and

of node 5 is d(5) = 3.

Path between two nodes in a graph

A path between two nodes in a graph, say v and w, is a sequence of edges which

joins a sequence of nodes from v to w. In the graph in Figure 1.3.1 for example, the

sequence 6 → 4 → 3 → 2 forms a path from 6 to 2. On the other side, the sequence

6 → 4 → 3 → 1 is not a path since {3, 1} is not an edge in the graph. A shortest path
between two nodes is a path using the least amount of edges. The shortest path

from node 6 to node 1 for example has length 3.

Flows on networks
Undirected graphs, like those we have just seen, are useful in many situations. In other

cases, it makes sense if the edges have a direction.

Directed graph

A directed graph is a pairG = (V,A) where A is the set of arcs, which are directed

edges. We denote an arc from node i to node j by (i, j).

To get an idea of when directed graphs can be useful, suppose we are given a sewage net-

work from an industrial estate. We have depicted it in Figure 1.3.2. The nodes in this graph

are the Companies, the intersections (I1, I2, I3) and the Reservoir. The arcs in this network

are sewage pipes, represented by arrows. The sewage water should go from the compan-

ies to the reservoir, where the sewage water is purified. To harness the power of gravity, the

pipes are typically slanted downwards, so the water flows in the right direction. Sometimes,

intersections are at the same height, like I1 and I2, so water can flow both ways.

In reality, if the sewage system is overloaded or there is some congestion, water might

flow in any direction. For the purpose of this example, we do not consider these scenarios.

Today, Company 2 and Company 3 are not producting any waste water at all. Imagine Com-

pany 1 flushes 3 cubic metres of water into the sewage system every minute. We can de-

scribe the resulting flow as follows:

• For every arc a ∈ A, we define the flow value fa, describing the amount of sewage

that flows through this pipe every minute.

• At any node (except Company 1 and Reservoir) the amount of flow going in, should

equal the amount flowing out.
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Observe that in this way we obtain a flow along the path Company 3 - I2 - I3 - Reser-

voir. A flow along a path of this graph, starting at Company 3 and ending in Reservoir, is

called a Company 3 - Reservoir flow. In general we will use the notation s− t-flow for a flow

on a path in the graph starting from a source s and ending in a sink t. This ideas leads us to

the general definition of an s− t-flow on a graph.

s-t flow

Let s and t be nodes in a directed graphG = (V,A). Then an s− t flow is a collection

of values fa, a ∈ A that defines a flow value for every arc such that flow conserva-

tion holds. This means:

• For every node v (except s and t), the total flow value going into v equals the

total flow value going out of v.

For simplicity, we assume s has only outgoing arcs, and t has only ingoing arcs. The

value of an s− t flow is the total flow going out of s.

You, the reader, are invited to write a flow value next to every arc in Figure 1.3.2 in

such that these values constitute a valid s− t flow of value 3.

Company 1

Company 2

Company 3

I1

I2 I3

I4

Reservoir

Figure 1.3.2. An imaginary sewer network as a directed graph

Flows usually become interesting when the arcs each have a certain capacity. Denote

the capacity of an arc a by ca. In Figure 1.3.3 we have drawn a flow from Company 1 to

the Reservoir with value 3. The capacities are drawn in red, after the ‘/’. Note how the pipe

from I3 to the reservoir has capacity 1, so the remaining flow has to be sent through I4.



19NETWORKS GOES TO SCHOOL

0/3 0/3

0/3

0/3

0/3

0/5 0/2

0/4 0/3

Company 1

Company 2

Company 3

I1

I2 I3

I4

Reservoir

Figure 1.3.3. An imaginary sewer network with capacities as a directed graph, with a flow of

value 3 from Company 1 to the Reservoir

Constructing flows with paths
One way of constructing a flow is by taking an s − t path P , and choosing an amount of flow

to send along this path. As long as this amount does not exceed the capacity of any arc on

the path, this results in a valid s− t flow.

Taking it one step further, we can choose several s − t paths P1, P2, . . . , Pn and assign

each path a flow value. Look again at the flow f in 1.3.3. This is a flow composed of flows on

two paths, namely

• P1: Company 1→ I1→ I2→I3→Reservoir,

• P2: Company 1→ I1→ I2→I3→I4→Reservoir.

Notice how the paths overlap! In the example, the flow induced by each path is

fP1 = 1,

fP2 = 2.
(1.3.1)

In a way, this is easier: we get flow conservation essentially for free! But finding the flow

on each arc is a bit more tedious: give an arc a, we need to find all paths that include a, and

sum the flow values of these paths.
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Finding paths in a network

We have seen that a way of viewing s − t flows is using s − t paths. Small networks can

easily be drawn. We can often easily find paths between two nodes. For large networks, this

is time consuming and tedious. Luckily, we can let a computer find paths between nodes

using an algorithm.

Algorithm

An algorithm is a step-by-step procedure to perform a given task. Algorithms can be

executed by computers, but also by persons.

Below we give an algorithm to find one s − t path in an undirected graph. However, the

algorithm can be adjusted to find a path in a directed graph, or even to find all paths in a

graph. For the latter, one needs to be careful; what if the graph has cycles?

Breadth First Search

LetG = (V,E) be given, as well as nodes s and t. The following algorithm finds an

s− t path, or tells you one doesn’t exist.

1. Put s in a listQ and mark s as visited

2. Repeat the following steps untilQ is empty:

3. remove the first vertex v from listQ

4. for every neighbour w of the node v, do the following:

5. put w at the end of listQ

6. mark w as visited

7. set the predecessor of w to v

When the algorithm is done, there are two options:

• Node t has no predecessor. This means there is no s− t path in the graph.

• Node t has some predecessor w. This node w has again a predecessor. And so on,

until we eventually find s. By tracing the predecessors like this, we find an s− t path.

It turns out that if every edge in the graph has equal “length” (or “weight”), then this path is

a “shortest” path (or “minimum weight path”). Furthermore, we do not only find a path to t

(if it exists), but also one to every node that is reachable from s.

It may be hard to visualize what this algorithm does. Perhaps the video that this QR code

leads you to will help. You can also click this link.

https://www.youtube.com/watch?v=HZ5YTanv5QE
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1.4. Game theory
During World War I, peace broke out. It was Christmas 1914 on the Western Front. Despite

strict orders not to chillax with the enemy, British and German soldiers left their trenches,

crossed No Man’s Land, and gathered to bury their dead, exchange gifts, and play games.

Meanwhile: it’s 2024, the West has been at peace for decades, and wow, we suck at trust.

Surveys show that, over the past forty years, fewer and fewer people say they trust each

other. So here’s our puzzle:

Why, even in peacetime, do friends become enemies? And why, even in wartime, do enemies

become friends?

We think game theory can help explain our epidemic of distrust – and how we can fix it! So, to

understand all this...

*Text taken from Evolution of Trust (https://ncase.me/trust/).

Game theory

Game theory is the study of mathematical models of strategic interactions. In gen-

eral, you have a situation where participants need to make a decision. Each decision

results in a profit or a penalty, and you want to understand how all the parties in-

volved should behave if you want an optimal decision to be made.

Game theory has applications in many fields of social sciences, and is used extensively

in economics, logic, systems science and computer science. Let us see some popular ex-

amples.

1.4.1. Cooperation vs Competition
A game is cooperative if the players are able to form alliances and work together towards

an optimal scenario for the whole team. In this case they try to cooperate and maximize

together the profit of the whole group.

A game is non-cooperative if players cannot form alliances or if all agreements need

to be self-enforcing. In this case players are selfish and are competing with each other to



22 NETWORKS GOES TO SCHOOL

maximize their individual profits.

Figure 1.4.1. Picture taken from the online game Evolution of trust, you can play the game here

https://ncase.me/trust/

1.4.2. Prisoner's dilemma
The prisoner’s dilemma is a famous example of a non-cooperative game. We read on Wiki-

pedia the following:

William Poundstone described this ”typical contemporary version” of the game in his 1993

book Prisoner’s Dilemma:

Two members of a criminal gang are arrested and imprisoned. Each prisoner is in solitary

confinement with no means of speaking to or exchanging messages with the other. The po-

lice admit they don’t have enough evidence to convict the pair on the principal charge. They

plan to sentence both to a year in prison on a lesser charge. Simultaneously, the police offer

each prisoner a Faustian bargain. If he testifies against his partner, he will go free while the

partner will get three years in prison on the main charge. Oh, yes, there is a catch ... If both

prisoners testify against each other, both will be sentenced to two years in jail. The prisoners

are given a little time to think this over, but in no case may either learn what the other has de-

cided until he has irrevocably made his decision. Each is informed that the other prisoner is

being offered the very same deal. Each prisoner is concerned only with his own welfare—with
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minimizing his own prison sentence.

This leads to four different possible outcomes for prisoners A and B:

(1) If A and B both remain silent, they will each serve one year in prison.

(2) If A testifies against B but B remains silent, A will be set free while B serves three

years in prison.

(3) If A remains silent but B testifies against A, A will serve three years in prison and B

will be set free.

(4) If A and B testify against each other, they will each serve two years.

You can visually represent this situation as follows:

Figure 1.4.2. Visual representation of Prisoner's dilemma, made by cmglee under Creative

Commons for Wikipedia, Prisoner's Dilemma.

You see that these ”players” need to make a decision, without knowing the decision of the

other player. Obviously they can’t cooperate (what should they decide if cooperation was

allowed?), and they decision has a big impact on both players. Game theory offers tools

to understand how such decisions could be made. This brings us to the concept of a Nash

equilibrium!

1.4.3. Nash equilibrium
The Nash equilibrium, named after American mathematician John Nash, who won both the

Nobel Prize in Economics (1994) and the Abel Prize in mathematics (2015), is the most

commonly-used solution concept for non-cooperative games. A Nash equilibrium is a situ-
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ation where no player could gain by changing their own strategy (holding all other players’

strategies fixed). Let’s go back to the prisoner’s dilemma.

Nash equilibrium

A Nash equilibrium is a situation where no player could gain by changing their own

strategy, holding all other players’ strategies fixed.

What is the Nash equilibrium in this game? We need to find the pair of decisions (A, B)

such that each player won’t change their decision if they know the decision of the other

player. There are four possible pairs of decisions, namely (A stays silent, B testifies), (A

stays silent, B stays silent), (A testifies, B testifies), (A testifies, B stays silent). We want to

find in which of these cases a player doesn’t change their decision if they know the decision

of the other player. Consider the pair (A stays silent, B testifies). If player A knows the de-

cision of player B, then of course they change their decision since by testifying A will go to

prison for 2 years instead of 3 years. On the other hand player B wouldn’t want to change

their decision in this situation. So the pair (A stays silent, B testifies) is not a Nash equilib-

rium! Work out the other three cases in Exercise 4 to find the answer.
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Figure 1.4.3. A graph from our article on the Friendship paradox:

networkpages.nl/the-friendship-paradox-and-how-it-might-produce-a-biased-world/.

On the Network Pages

For further reading on probability theory, game theory, algorithms, and graph theory

have a look at

(1) Trust and other wonderful mistakes humans make, by Ben Maylahn. network-

pages.nl/trust-and-other-wonderful-mistakes-humans-make/

(2) No winner without a second place, by Ruben Brokkelkamp. network-

pages.nl/no-winner-without-a-second-place/

(3) Our collection of articles on graph theory, networkpages.nl/tag/graph-theory/

(3) Our collection of articles on probability theory, network-

pages.nl/tag/probability-theory/
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Chapter 2

To be a social or a selfish

driver?

Imagine a scenario where every driver in the city starts from the same location and needs

to reach the same destination. Each driver wants to get there as fast as possible, choosing

routes they think will minimize their travel time. But what happens when everyone makes

these choices independently? Often, this can lead to heavy congestion, with everyone’s

trip taking longer than it would if they coordinated. This raises an interesting question: how

much does everyone acting in their own best interest actually make things worse for every-

one? In this chapter, we model this scenario using flows on graphs and attempt to answer

this question using tools from Game Theory. Moreover, we will consider some options the

government may have to improve traffic and how do these affect the network.

2.1. A mathematical model of selfish routing
A road traffic network consists of a collection of roads connecting various cities. The users

of this network travel from a common starting location, called the source, to a common tar-

get1. These users drive vehicles, so we will refer to them as the drivers in the network.

Throughout this chapter, we will take the perspective of a social planner (think of a person

in the government responsible for traffic!) analyzing how traffic congestion builds up on city

roads. In particular:

1. To represent the roads of a city, we use a directed graphG = (V,E), where V is the

set of vertices (representing intersections or cities) and E is the set of edges (rep-

1This is indeed a simplification. In the real world, drivers may of course have different origins and

destinations. However, many of the conclusions we will arrive to, hold even for the general case!
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resenting roads between the intersections or cities). If two vertices u and v ∈ V are

connected by a road going from u to v, we represent this road as an edge (u, v) ∈ E.

Note that we allow parallel edges, meaning that for two vertices u, v ∈ V , there may

be more than one road (directed edge) from u to v. Finally, we denote the origin loc-

ation by a special vertex we call s and the destination by a vertex we call t. Naturally,

we assume that every givenG = (V,E) with s, t ∈ V we consider has at least one

path from s to t.

2. To focus on the bigger picture of this large-scale system, we will assume that each

driver contributes only a small amount to the overall congestion. That is, if there are

10 cars in the network, each driver controls 1
10
of the traffic, or if there are 100 cars,

then each one of them controls 1
100

of the traffic. In general, if there areN cars and

N is large, the fraction 1
N
becomes very small, and therefore, we can assume that

the impact of an individual driver is negligible, although a large group of drivers is still

impactful. Therefore, we choose to model traffic as a continuous flow, rather than

tracking individual drivers. More precisely, in a graphG = (V,E) we assume that we

want to transfer a flow of 1 (representing the entire population of drivers) from s ∈ V

to t ∈ V .

Figure 2.1.1. When the number of cars is large the impact of an individual driver is negligible.

We study traffic as a continuous flow!

3. Every edge e ∈ E has a non-negative number `e which represents the travel time on

the road depending on the traffic. We can describe these numbers as a function on

the edges of the graph, which we call the latency function `e.

4. Finally, we assume that drivers have full information about the state of the network.

This allows them to make informed (selfish) decisions. One way to interpret this,

is that drivers have access to navigation systems which inform them of the current

traffic in real-time.

By summarizing the above, we can define an instance of a simple selfish routing game.
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s

u

v

t

`(x) = x2

`(x) = 2

`(x) = 1

`(x) = x

Figure 2.1.2. An example of a selfish routing game.

Selfish Routing Game

An instance of a selfish routing game is given by

• a directed graphG = (V,E) with a vertex set V and an edge set E.

• a non-negative and continuously differentiable latency function `e for each

edge e ∈ E

• a connected pair (s, t) ∈ V × V of source and target nodes associated with a

flow demand of 1 (a flow of 1must be sent from s to t)

For a selfish routing game with k paths from s to t, let P1, . . . , Pk be the set of available

paths from s to t. A feasible flow is a vector of numbers f = (fP1 , . . . , fPk ) such that fPi ≥ 0

for i = 1, . . . , k, and the total flow across all paths satisfies
∑k

i=1 fPi = 1. For a given

feasible flow f , we define for every s − t path P its total latency as `P (f) =
∑

e∈P `e(fe),

where fe is the flow put by f on edge e by all the paths that include it. Finally, we define as

SC(f) =
∑k

i=1 `Pi(f)fP the social cost (or total latency) of a flow.

EXAMPLE 2.1.1. Consider the selfish routing game depicted by the graph in Figure 2.1.2.

There are k = 2 paths from s to t: the first path is s → u → t (denoted P1) and the second

path is s → v → t (denoted P2).

• The flow f =
(
1
2
, 1
2

)
is feasible. This is because sending a flow of 1

2
along P1 and a

flow of 1
2
along P2 results in the transfer of a total flow of 1

2
+ 1

2
= 1 from s to t. The



29NETWORKS GOES TO SCHOOL

social cost of this flow, SC
(
1
2
, 1
2

)
, is calculated as:

SC

(
1

2
,
1

2

)
= `P1

(
1

2
,
1

2

)
· 1
2
+ `P2

(
1

2
,
1

2

)
· 1
2

=

(
`(s,u)

(
1

2

)
+ `(u,t)

(
1

2

))
· 1
2
+

(
`(s,v)

(
1

2

)
+ `(v,t)

(
1

2

))
· 1
2

=

(
1

4
+ 1

)
· 1
2
+

(
2 +

1

2

)
· 1
2

=
15

8
= 1.875.

• The flows f =
(
1
3
, 2
3

)
, f = (1, 0), and f = (0, 1) are also feasible for similar reasons.

• In general, for every x ∈ [0, 1], the flow f = (x, 1− x) is feasible for this graph.

Computing the social cost for these flows is left as an exercise (see Exercise 1).

The social cost SC(f) can be interpreted as the average travel time in the network when

the flow f represents the traffic. Clearly, the goal of the social planner is to design the net-

work in a way that minimizes this cost.

Optimal flow

Given a selfish routing game, we say that a feasible flow f∗ is optimal if it minimizes

the social cost. Formally, for every feasible flow f , it holds that SC(f∗) ≤ SC(f).

For general networks, computing an optimal flow may be challenging because it requires

solving an optimization problem, typically a convex program, which might require help from

software. However, for simple networks, it is relatively straightforward to find by hand. For

example, can you compute the optimal flow for the selfish routing game in Figure 2.1.2?

Unfortunately, in practice, the social planner cannot always expect to achieve traffic that

follows the optimal flow. This is because drivers are selfish and will typically choose routes

based on what they perceive to be the fastest. In fact, if the social planner suggested routes

to simulate the optimal flow, drivers might refuse to follow them. Nevertheless, calculat-

ing the optimal flow and the minimum social cost of a selfish routing game is useful, as it

provides a ”best-case” scenario for the social planner.

2.2. The Nash flow and the price of anarchy
But how does traffic actually look for selfish drivers? What kind of flow do we expect to see

on a network? To understand their behavior, let’s consider an example commonly referred

to in the literature as the Pigou2 network.

2Arthur Cecil Pigou (1877–1959) was a professor of economics at the University of Cambridge.
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s t

`P1(x) = x

`P2(x) = 1

Figure 2.2.1. The Pigou network.

Let’s first try to interpret the Pigou network qualitatively. There are two paths from s to t:

the upper path (denoted P1) and the lower path (denoted P2), with each of them being a

single edge or road. The latency function of P1 is `P1(x) = x, which implies that the con-

gestion on this road increases linearly with the number of cars using it. The traffic will only

become “bad” if most of the cars in the network choose this path. You can think of P1 as a

highway with multiple lanes—it’s generally fast unless it becomes overly crowded. On the

other hand, the latency function of P2 is `P2(x) = 1. This means that the congestion on

this road is constant and does not depend on how many cars use it. However, this constant

latency is relatively high, even if only a few cars take this route. We can think of P2 as a nar-

row or old road that cannot handle heavy traffic efficiently.

Why is 1 very high?

We said that in the Pigou network path P2 has a high latency value of 1. As a num-

ber 1 is of course not so large, but remember that there is high traffic and every

driver is responsible for a fraction of the total traffic. Hence a latency value of 1 is

equal to maximum traffic! When have the drivers choose P1 then `P1(
1
2
) = 1

2
.When

all drivers choose P1 then `P1(1) = 1, which equals the constant value of P2. Hence

the experience of a driver taking P2 is always similar to full traffic on P1.

Consider the perspective of a driver following the narrow road P2. What is on their mind?

Well, unless every other car in the city has decided to follow P1 to go from s to t (in which

case P1 is heavily congested, and the driver is indifferent about which road to take), they

are probably regretting following P2. This is because they could improve their travel time by

switching to P1. Mathematically, if there is a flow of x > 0moving through P2, the following

condition must hold for the network:

`P2(x) ≤ `P1(1− x).

If this inequality holds then using P2 was a good choice! This is an equilibrium condition.

Such conditions must hold for all paths from s to t even in more general graphs. In a sense,

these conditions describe the Nash equilibrium of this selfish routing game. Applying equi-
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librium conditions to all paths leads us to a special type of flow, which we call the Nash

flow, or equilibrium flow.

Nash flow

Given a selfish routing game, we say that a feasible flow fnash is a Nash flow (or equi-

librium flow) if, for every pair of s − t paths Pi and Pj that carry positive flow under

fnash, it holds that `Pi(fnash) = `Pj (fnash).

By applying the above definition to the selfish routing instance on the Pigou network (Figure

2.2.1), we find that the Nash flow is fnash = (1, 0), meaning all the traffic is routed through

P1. The social cost of this flow is

SC(fnash) = SC(1, 0) = `P1(1) · 1 + `P2(0) · 0 = 1.

To get a quantitative sense of how good or bad the Nash flow is, it makes sense to compare

its social cost with the social cost of the optimal flow. To do this, we need to find an x ∈
[0, 1] such that

SC(x, 1− x) = `P1(x) · x+ `P2(1− x) · (1− x) = x2 + 1− x

is minimized. Let g(x) = x2 + 1− x. The first derivative of g(x) is g′(x) = 2x− 1. Therefore,

we need to find an x∗ ∈ [0, 1] such that g′(x∗) = 0 to find the global minimum3. Solving the

equation, we obtain that x∗ = 1
2
.

Therefore, the optimal flow for our Pigou network is (x∗, 1− x∗) =
(
1
2
, 1
2

)
, and the minimum

social cost is

SC(x∗, 1− x∗) = SC

(
1

2
,
1

2

)
= `P1

(
1

2

)
· 1
2
+ `P2

(
1

2

)
· 1
2
=

1

4
+

1

2
=

3

4
.

From the above, we can infer that the Nash flow of the Pigou network is 4/3 times worse

than the optimal flow in terms of social cost. In fact, the ratio

SC(fnash)

SC(f∗)
=

1
3
4

=
4

3

has an important meaning: it serves as a lower bound on the price of anarchy for a large

class of selfish routing games. Here is the formal definition.

Price of Anarchy

The price of anarchy of a class of selfish routing games is the worst-case ratio of the

social cost at equilibrium to the optimal social cost, across all games in the class

and all Nash equilibria of those games.

3Note that x∗ is indeed a global minimum and not a global maximum since g′′(x) = 2 > 0 (by the
second derivative test).
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This metric is commonly used by theoretical computer scientists who are interested in ana-

lyzing the worst-case performance of a system. It is one of the key concepts in algorithmic

game theory, a field that lies at the intersection of theoretical computer science and eco-

nomics.

Remark 2.2.1. With our analysis, we were only able to prove a lower bound on the price

of anarchy by examining a specific game (the Pigou network in Figure 2.2.1) and its spe-

cific Nash flow. Proving an upper bound is much more technically involved and will not be

covered in this mini-lecture. However, it is remarkable that the bound of 4/3 on the Price of

Anarchy we found is the worst-possible for the class of games with latency functions of the

form `(x) = αx+ β, where α, β ≥ 0 (affine functions)!

2.3. Improving Traffic with Tolls
Now imagine that the social planner is looking for a way to decrease congestion at equilib-

rium. Let’s return to our example (Figure 2.2.1). Recall that at the equilibrium flow, all cars

take path P1. Since the drivers are free to choose which road they will take, they cannot be

influenced directly. To reduce the total number of cars on P1, the social planner would like

to provide an incentive for drivers to take P2 instead. To achieve this, let’s assume that the

social planner can impose tolls: a toll of τ1 ≥ 0 on P1 and a toll of τ2 ≥ 0 on P2 (see Figure

2.3.1).

s t

`P1(x) = x

`P2(x) = 1

τ1 ≥ 0

τ2 ≥ 0

Figure 2.3.1. Tolls on the Pigou network.

Once the tolls τ1 and τ2 are introduced, the costs incurred by drivers are influenced not only

by the latency functions, but also by these tolls. Therefore, for each selfish routing game

and for each edge e with toll τe, the cost for a flow f is defined as:

ce(fe) = `e(fe) + γ · τe,

where γ > 0 is a parameter fixed in the model.

At first glance, this definition might seem strange because the functions ` represent latency

(i.e., time), while each τe ≥ 0 is a monetary cost. This is where the parameter γ comes
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in: it represents how much drivers care about tolls. A high value of γ means that drivers

are highly sensitive to paying tolls, while a low value means they are more tolerant. While

drivers may have different tolerances for tolls, we assume here for simplicity that all drivers

are have the same reaction to tolls.

Another important assumption is that the social planner (for example, the government) is

not interested in maximizing profits from the toll system; their goal is still to minimize the

average travel time. There are several ways to justify this. One explanation is that the gov-

ernment needs the toll revenue to cover the cost of implementing and maintaining the toll

system and they can get this money by running the toll system for a sufficient time (e.g. first

few months). After this, they are indifferent regarding revenue from tolls. Alternatively, the

government might be using average travel time as a proxy for reducing emissions, aiming

for an environmental goal, such as lowering greenhouse gas emissions.

Recall that without tolls, the social cost of the optimal flow f∗ =
(
1
2
, 1
2

)
is SC

(
1
2
, 1
2

)
= 3

4
,

whereas the Nash flow is fnash = (1, 0) with a social cost of SC(1, 0) = 1. Our goal now is to

answer the following question:

Question

How can we set τ1 and τ2 in the network of Figure 2.3.1 so that the optimal flow(
1
2
, 1
2

)
becomes a Nash flow?

Keeping in mind that drivers now have cost functions affected by tolls, and the definition of

a Nash flow, we conclude that to find a pair τ1 and τ2 with this property, it must hold that

`P1

(
1

2

)
+ γ · τ1 = `P2

(
1

2

)
+ γ · τ2 ⇐⇒ 1

2
+ γτ1 = 1 + γτ2 ⇐⇒ τ1 =

1

2γ
+ τ2.

As we can see above, there are infinitely many such pairs. Notice that by introducing these

tolls, the price of anarchy of this system becomes 1, meaning that the selfish behavior of

drivers no longer negatively impacts the system at all.

2.4. The Braess Paradox

Consider the selfish routing game represented by the network in Figure 2.4.1a. There are

two paths from s to t in this network: s → u → t and s → v → t. Since both paths have

the same latency functions (though applied in a different order), it is easy to see that the

optimal flow f∗ is
(
1
2
, 1
2

)
. Furthermore, by recognizing the symmetry in the latency func-

tions and recalling the definition of Nash flows, we can conclude that the optimal flow f∗

is also the Nash flow, i.e., f∗ = fnash. Thus, the social cost of this flow is SC
(
1
2
, 1
2

)
=

( 1
2
+ 1) · 1

2
+ (1 + 1

2
) · 1

2
= 3

2
.
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`(x) = x

`(x) = 1

`(x) = 1

`(x) = x

(a) A selfish routing game

s

u

v

t

`(x) = x

`(x) = 1

`(x) = 1

`(x) = x

`(x) = 0

(b) Adding a new highway.

Figure 2.4.1. The Braess Paradox instance.

Suppose now that the government decides to build a new road from u to v (see Figure 2.4.1b)

in an attempt to further improve congestion in the network. In fact, suppose that this new

road is built using state-of-the-art techniques in road engineering, and it guarantees that

there will be no congestion. That is, for any flow of cars x on this road, we have `(x) = 0.

Notice that now, in the new version of the network, there are three paths from s to t: the

paths s → u → t and s → v → t, as before, but also the new path s → u → v → t. The

government expects that traffic will now spread across the three paths, and thus congestion

will improve.

But does this actually happen? Let’s reconsider the situation from the perspective of a

selfish driver. With the introduction of the new road from u to v, drivers who were consid-

ering paths that included u → t or s → v now have the option to follow the ”zig-zag” route

(see Figure 2.4.2) and reduce their travel time. However, this shift increases congestion on
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the roads s → u and v → t. This process continues until all drivers have moved to the ”zig-

zag” path.

The new Nash flow

In the Nash flow for the network in Figure 2.4.1b, the entire flow of 1 starting from s

and ending at t uses the path s → u → v → t (see Figure 2.4.2).

s

u

v

t

`(x) = x

`(x) = 0

`(x) = x`(x) = 1

`(x) = 1

Figure 2.4.2. The new Nash flow

Notice that the social cost of this new Nash flow is 2, while before the introduction of the

new road, it was 3
2
. Therefore, the overall traffic in the system has increased by 33%!

There is a common belief in the mathematics and engineering community that when there

is no traffic congestion in a network, adding new road segments will not negatively affect

the average travel time. However, when congestion is already present, adding a shortcut

may actually increase the overall travel time. The phenomenon we just analyzed is known

as Braess’s paradox, named after Dietrich Braess, a German mathematician who first dis-

covered it in 1968. Braess observed that the introduction of a new road could paradoxically

worsen traffic conditions, as drivers, acting selfishly, might individually optimize their own

travel time but collectively increase congestion.

This raises an important question: in a congested network, are there edges that negatively

impact the average travel time? This is a crucial factor that experts must consider when

designing road networks. Although solving this problem exactly is difficult, there are al-

gorithmic methods that can help identify potentially problematic edges.
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Figure 2.4.3. Viewing traffic as a flow, from the article of Peter Kleer "Traffic Congestion:

Pigou's Example"

On the Network Pages

For further reading on game theory and road traffic have a look at these articles

written by Peter Kleer:

(1) Traffic Congestion: Pigou’s Example, networkpages.nl/equilibrium-

congestion-models-pigous-example/.

(2) Traffic Congestion: Tolls, networkpages.nl/traffic-congestion-model-part-ii-

tolls/.

(3) Braess paradox,networkpages.nl/traffic-congestion-iv-braess-paradox/.

(4) Traffic lights no longer needed: back to the future by Rik Timmerman,

networkpages.nl/traffic-lights-no-longer-needed-back-to-the-future/.
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Chapter 3

Queueing Theory - Waiting in

an efficient way

Queueing theory

Queueing theory is a branch of operations research that studies waiting lines or

queues from a mathematical perspective.

Some typical everyday examples of queueing systems can be found in supermarkets, in-

dustrial production systems and hospitals. In a supermarket customers arrive to the coun-

ters, they may have to wait in the queue until their turn comes, they are served and then

leave the supermarket. In an industrial production system, like a factory producing cars,

the products also have to undergo multiple stages until they are assembled and the serv-

ers may be either machines or individuals. Finally, patients arriving to a hospital often need

access to resources like doctors, beds, medicine and equipment. A new patient can go into

treatment only when the hospital has the necessary resources available, for example only if

there are free beds. In short, queueing theory helps us to analyse such systems and make

important decisions about the layout, capacity and control.

3.1. A mathematical model of a queue
To study any kind of system or real-life situation we first have to construct a mathematical

model. To illustrate what a mathematical model is, you can think of a toy car of a Ferrari

(which is also called amodel car). Such a toy car is not precisely like the Ferrari, since it

does not contain a working engine, is made of different material, is much smaller, and so

on. However, it does give you a good idea of the shape, how it looks when it is driving, and
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how it compares to other toy cars. As another example, architects make models of their

buildings on a small scale (also called a scale model) to study how they would look, how

much light will enter the building, how much material is needed, and so on. In a similar way,

mathematical models describe a real-life phenomenon, using mathematical concepts and

language. The model will not resemble reality perfectly, but can be used to learn from.

Amathematical model

When we speak of a mathematical model we mean a description of a system or

some real life situation, in this case a queue, using mathematical concepts.

In our setting we are interested in queueing models. The idea behind such a model is to

replicate the behavior of a queue as accurately as possible, so that the model can be used

to make predictions on how the system will behave. Among others, a queueing model is

characterised by:

• How customers arrive.

Customers arrive to a system at, possibly random, points in time, we call this the ar-

rival process. The time between two consecutive arrivals is called the interarrival time

and is usually described by a random variable. We assume that the interarrival times

between customers are independent and have a common probability distribution. In

many practical situations customers arrive according to a Poisson stream (i.e., the in-

terarrival times have an exponential distribution). Customers may arrive one by one,

or in batches. An example of batch arrivals is the customs once at the border where

travel documents of bus passengers have to be checked.

• The behavior of customers.

Customers may be patient and willing to wait. Or customers may be impatient and

leave after a while. For example, in call centres, customers will hang up when they

have to wait too long before an operator is available, and they possibly try again after

a while.

• How customers are served.

Each customer needs some time to be served by the server. This time is called the

service time of that customer. Often customers don’t have exactly the same ser-

vice time, hence in many cases we consider the service time to be a random variable.

Usually we assume that the service times are independent and have a common distri-

bution function, and that they are independent of the interarrival times. For example,

the service times can be deterministic or exponentially distributed. It can also occur

that service times depend on the queue length. For example, the processing rates of

the machines in a production system can be increased once the number of jobs wait-

ing to be processed becomes too large.

• The service discipline.
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Figure 3.1.1. Illustration of an M/M/1 queue

Customers can be served one by one or in batches. We have many possibilities for the

order in which customers can be served. We mention:

– first come first served, i.e., in order of arrival;

– random order;

– last come first served (e.g., in a computer stack or a shunt buffer in a production

line);

– priorities (e.g., rush orders first, shortest processing time first);

– processor sharing (in computers that equally divide their processing power over

all jobs in the system).

• The service capacity.

There may be a single server or a group of servers helping the customers.

• The waiting room.

There can be limitations with respect to the number of customers in the system, i.e.

the customer being served, if any, and the number of customers waiting in the queue.

For example, in a data communication network, only finitely many cells can be buf-

fered in a switch. The determination of good buffer sizes is an important issue in the

design of these networks.

All these different aspects of queueing systems result in a huge variety of queueing models,

which means that an efficient way to characterise queueing models based on its proper-

ties is vital. Luckily, D.G. Kendall introduced in 1953 a shorthand notation to characterise

queueing models. We explain the notation via the simplest model denoted byM/M/1. In

theM/M/1 queueing model each letter represents a property of the system, in particular:

• The first letter: the interarrival time between arriving customers has an exponential

distribution with parameter λ. The M stands for Memoryless.

• The second letter: the service time distribution has an exponential distribution with

parameter µ. Other models that are often studied areM/D/1 which stands for de-

terministic service times orM/G/1 which stands for general service times.

• The number: the number of servers in the queueing model.

3.2. TheM/M/1 queue

After all this notation we can finally start analysing theM/M/1 queue. LetQ be a random

variable that denotes the number of customers in the system. We start analysing theQ by
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constructing a flow diagram forQ. Below we explain how to construct this flow diagram.

0 1 2 . . . n− 1 n . . .

Figure 3.2.1. State space forQ.

In this figure the numbers denote the state of the system, i.e., how many customers are

in the system. Suppose that L = i, that is there are i customers in the system. Then two

things can occur: the customer who is being served departs from the system before a new

customer arrives, or a new customer arrives before the customer who is being served de-

parts the system. The first event corresponds to the transition {Q = i} → {Q = i − 1}
since a customer departs. The service time has an exponential distribution with parameter

µ, hence we say that the transition {Q = i} → {Q = i − 1} occurs with rate µ. On the
other side the second event corresponds to the transition {Q = i} → {Q = i + 1} since
a customer arrives to the system. The interarrival time has an exponential distribution with

parameter λ, hence the transition {Q = i} → {Q = i + 1} occurs with rate λ. We can illus-
trate these transitions using the following flow diagram, where we have chosen the case i =

1.

0 1 2 . . . n− 1 n . . .

λ

µ

Figure 3.2.2. Flow from state {Q = 1}.

Doing this for all possible states we obtain the following flow diagram

0 1 2 . . . n− 1 n . . .

λ λ λ

µ µ µ

Figure 3.2.3. Flow diagram for theM/M/1 queue.

Since the customers arrive to the system according to a Poisson process, that is at random

times, and have a service time which is also random, i.e. exponentially distributed, we ob-

serve thatQ will also be a random variable. Thus we want to know the probabilities that at
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an arbitrary point in time there will k customers in the system (which means 1 customer in

service, and k − 1 customers waiting for service). We denote this probability by pk. We are

going to compute the probabilities pk = P(Q = k), for k = 0, 1, 2, . . . using a flow conserva-

tion argument.

Flow Conservation Argument

The probability flux in any subset of states is equal to the probability flux out of that

subset of states. Intuitively, this means that you enter a state just as many times as

you leave a state.

0 1 2 . . . n− 1 n . . .

λ λ λ

µ µ µ

Figure 3.2.4. Flow diagram of the probability flux for theM/M/1 queue.

Consider for example the set consisting of the state 0, i.e., where no customers are present

in the system. Then the probability flux out of this set is λp0, because we are in state 0 with

probability p0 and we leave it with rate λ. The probability flux into the set {0} is equal to
µp1, because we can reach state 0 only from state 1 in which we are with probability p1 and

the transition from state 1 to 0 happens with rate µ. Then we get the first equation

λp0 = µp1,

which we can rewrite to

p1 =
λ

µ
p0 = ρp0, (3.2.1)

where ρ = λ/µ. If ρ < 1, then ρ is called the occupation rate, because it is the fraction of

time the server is working. Intuitively, ρ < 1means that there are on average more depar-

tures than arrivals so the queue will not keep growing. Suppose now that we consider the

subset {1}, then we obtain the equation

(λ+ µ)p1 = λp0 + µp2,

which, after substituting p1 from (3.2.1), can be rewritten to

p2 = ρ2p0.
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In general we obtain the equations

(λ+ µ)pk = λpk−1 + µpk+1, k = 1, 2, . . .

and

pk = ρkp0, k = 0, 1, 2, . . . .

Hence it suffices to compute p0, which denotes the probability that there are no customers

waiting, and there is nobody being served. We know that the sum of all the probabilities has

to be equal to one, hence

∞∑
k=0

pk =

∞∑
k=0

ρkp0 = 1.

Solving this equation yields

p0 = 1− ρ.

For derivation of this result have a look at Exercise 9. Hence we obtain the following result

for the desired probabilities

pk = ρk(1− ρ), k = 0, 1, 2, . . .

Hence, the number of customers in an M/M/1 system is a geometric random variable with

success probability 1 − ρ (see Section 1.2.1). With this result already some quantities can

be computed. For example the average number of customers in the system is equal to

E[L] =
∞∑

k=0

kpk =

∞∑
k=0

kρk(1− ρ) =
ρ

1− ρ
. (3.2.2)

See also Exercise 9 for more details on how to derive this result.

3.2.1. Little's law
Little’s law is the most important relation between E[LQ], the mean number of customers in

the queue (there may be one more in service), E[W ], the mean waiting time of a customer

and λ, the average number of customers entering the system.

Little’s Law

Little’s law states that

E[LQ] = λE[W ].

Intuitively, this result can be understood as follows. Suppose that all customers pay 1 euro

per unit time while in the queue. This money can be earned in two ways.
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• The first possibility is to let pay all customers continuously in time. Then the average

reward earned by the system equals E[LQ] euro per unit time.

• The second possibility is to let customers pay 1 euro per unit time for their residence

in the queue when they leave. In equilibrium, the average number of customers leav-

ing the system per unit time is equal to the average number of customers entering the

system. So the system earns an average reward of λE[W ] euro per unit time.

The system earns the same in both cases. Hence these two quantities are equal which is

that Little’s law states.

3.3. The M/M/1/K Queue
The M/M/1/K queue is a finite-capacity queueing system. The system has a finite capacity

ofK (including the customer being served). In the M/M/1/K queue, only one job receives

service at a time. At any moment, there can be at mostK jobs in this system. Whenever

a job arrives and the system is full, it will be blocked and it will leave forever. The possible

states areQ = 0, 1, 2, . . . ,K. StateK means the system is full, no more customers can

enter.

Why is M/M/1/K so interesting? Let us consider the following situation. Each arriving

customer can choose to join or not join the queue. When such decisions become part of the

problem we are studying then the problem becomes a game theoretical problem.

Imagine the following situation: Upon completion of service, the customer is endowed with

a reward R (expressible in monetary units). All customer rewards are equal. The cost per

unit time to a customer for staying in a queue (i.e. for queueing) is C monetary units per

unit time. All customer costs are equal. Each arriving customer weighs the net gains asso-

ciated with joining or not joining. The net gain, in the first case ifQ = i, meaning there are i

customers waiting upon arrival, is on average equal to

Gi = R− C
i

µ
,

In Exercise 11 you are asked to explain why this formula is correct. In the alternative case

the net gain is zero. We see that as the number of customers in the systems, i.e. i, increases

the net gain decreases, at some point it may reach zero or even become negative. At that

point it is not profitable to wait and people no longer join. Hence there exists an integer ns

that satisfies the two inequalities

R− C
ns

µ
≥ 0 R− C

ns + 1

µ
< 0

If the number of customers in the system encountered an arriving customer is less or equal

to ns, then the arriving customer will choose to join, otherwise they will balk. We can incor-
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porate the above two equations into one expression

ns ≤ Rµ

C
= vs < ns + 1 .

If we use the ceil function d·e, then ns = dvse is the largest integer not exceeding vs. Note
that ns depends on µ,R,C, but not on the arrival rate λ.

3.4. Optimization

A queueing system can also be analyzed from a social perspective. In this context, the ob-

jective of controlling the system is to maximize social welfare, defined here as the total ex-

pected net benefit to society, encompassing both customers and servers. Under this ap-

proach, any payment exchanged between individuals within the population has no net im-

pact on social welfare and, consequently, does not affect the system’s optimization. There-

fore, the social objective is to maximize the total benefits from service while minimizing

waiting and operational costs.

Maximizing social welfare

Social welfare is defined here as the total expected net benefit to society, encom-

passing both customers and servers. The social objective is to maximize the total

benefits from service while minimizing waiting and operational costs.

Overall optimization. Consider a queue with the following setup:

• The arrival rate is λ,

• The maximum capacity of the system isK, so there will be at mostK customers in

the system.

• Customers will join the queue as long as the number of customers is less thanK,

• Hence the joining probability is 1minus the probability that there areK people in the

system upon arrival, which is 1− pK .

• Each joining customer will get a reward of R. 1

• The cost of queueing is still C monetary units per unit time.

• The expected waiting time for each customer that joins the queue is denoted by

E[W ].

Imagine a customer arrives at the queue and chooses to join the queue. Then they even-

tually get a reward of R. It also costs them, on average, E[W ] times C monetary units for

1Note that the server may charge a price for the service, but since this is a transaction between the

server and customers, so it will not be calculated in the social welfare.
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waiting. The expected payoff per customer that joins the queue is therefore

R− CE[W ].

We can use Little’s Law to exchange mean waiting time for mean queue length. We must be

careful though; we cannot simply use λ as the arrival rate, because the mean waiting time

was defined for the customers that join the queue. So we need the arrival rate of custom-

ers that actually join the queue. Since there is a probability of pK that an arriving customer

stumbles upon a full queue, the arrival rate of customers that join the queue is λ(1 − pK).

Little’s Law tells us

E[L] = (1− pK)λE[W ].

We then find

R− CE[W ] = R− 1

(1− pK)λ
CE[L]

Note that the payoff for customers that don’t join the queue is simply zero. This means that

the social welfare (the total payoff per unit time) is

SW = λ(1− pK)

(
R− 1

1− pK
CE[L]

)
= λR(1− pK)− C E[L].

In Exercise 12, you will calculate the optimal threshold that maximizes SW. Compare

it with ns. The conclusion we have in this section the optimal individual strategy is not op-

timal for society as a whole. One way to regulate it is by requiring a payment for the service.

Revenue maximization. Now consider a scenario where the server imposes an admission

fee θ. Unlike the social perspective, where funds collected are viewed as transfer payments,

here they are treated as the server’s profits. In this model, the fee θ is made known to cus-

tomers, who then decide whether to join the queue based on this fee. Suppose a customer

who observes i customers already in the system will only enter if the reward R is at least

equal to the expected total cost θ + C i
µ
.

Just like before, there is a certain threshold, say k, at which customers stop joining. If a

customer arrives, there is a pk chance they stumble upon a full queue. If so, they don’t join.

The rate at which people join the queue is therefore λ(1−pk). Denote byM the rate of profit

for the server. Then

M = λ(1− pk)θ.

We have that k is is the smallest number such that it is not profitable to join the queue any

more, because the costs outweigh the reward. So k is the smallest number for for which

θ + C
k

µ
> R.
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For numbers smaller than k, the ‘>’ becomes ‘≤’. Let us assume for simplicity that k satis-
fies

θ + C
k

µ
= R.

Then we can rewriteM as follows:

M = λ (1− pk) θ

= λ (1− pk)

(
R− C

k

µ

)
= λ (1− pk)R

(
1− C

k

Rµ

)
= λ (1− pk)R

(
1− k

vs

)
.

(3.4.1)

We can view our queue as anM/M/1/k queue (note the small k rather than bigK). In Ex-

ercise 9, you are tasked to deduce the blocking probability of such queue. It turns out that

is

pk =
(1− ρ)ρk

1− ρk+1
.

Hence

1− pk = 1− (1− ρ)ρk

1− ρk+1

=
1− ρk+1

1− ρk+1
− (1− ρ)ρk

1− ρk+1

=
1− ρk

1− ρk+1
.

(3.4.2)

This gives us the final result forM , which is

M = λR
1− ρk

1− ρk+1

(
1− k

vs

)
.

In Exercise13, calculate the integer nr that maximizes the toll revenue, and compare it with

ns.
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Figure 3.4.1. Consult a mathematician before you visit Disneyland, because queues can be

large! By Ellen Cardinaels.

On the Network Pages

For further reading on queueing theory and its applications have a look at:

(1) The quest for a beter Internet by Mark van der Boor,

networkpages.nl/the-quest-for-a-better-internet/.

(2) Consult a mathematician before you visit Disneyland by Ellen Cardinaels,

networkpages.nl/consult-a-mathematician-before-you-visit-disneyland/.

(3) Can flipping the queue spare you time by Youri Raaijmakers,

networkpages.nl/can-flipping-the-queue-spare-you-time/.

(4) Traffic lights no longer needed: back to the future by Rik Timmerman,

networkpages.nl/traffic-lights-no-longer-needed-back-to-the-future/.
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Chapter 4

Exercises

4.1. Probability theory

Conditional probabilities and expectations
EXERCISE 1. A conditional probability is denoted by P(A|B), which corresponds to

the probability of A happening, given that B happens.

Let’s look at a few simple examples. We denote byX the random variable that represents

the number that you roll with a six-sided die.

1. What is the probability that you roll a 6 with a six-sided die? In a formula: P(X = 6).

2. What is the probability that you roll a 6, given that you roll at least a 4; P(X = 6|X ≥
4)?

3. You can use the following formula to compute conditional probabilities:

P(A|B) =
P(A and B)

P(B)
. (4.1.1)

Check that this formula works by solving the second question again, but now with the

formula.

4. Similarly to probabilities, we can also look at expectations. What is the expected

number you roll with a six-sided die? In formulas: E(X).

5. What is the expected number that you roll, given that you roll at least a 4; E(X|X ≥
4)?

EXERCISE 2. The geometric random variable has expectation equal to

E[G(p)] =

∞∑
k=0

kP(G(p) = k) =

∞∑
k=0

k(1− p)kp =
1− p

p
. (4.1.2)
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Hint: Use the identity ∑
k=0

xk =
1

1− x
, x < 1

and take derivatives with respect to x on the left and right-hand sides.

The exponential distribution
EXERCISE 3. The exponential distribution is defined in the following way. Suppose thatX

is exponentially distributed with parameter λ. Then P(X < t) = 1− e−λt.

1. Calculate P(X ≥ t).

2. Calculate P(1 < X < 2).

3. Calculate the expectation of the exponential distribution with the following formula:

E(X) =

∫ ∞

0

P(X ≥ t)dt.

4. Use Equation (4.1.1) to prove the memoryless property of the exponential distribu-

tion:

P(X > t+ u|X > t) = P(X > u).
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4.2. Graph theory

Maximum flows
Consider the following flow network with capacities:

1/5

_/5

1/5 1/1

_/2_/4

_/4

_/4
_/4

s

a

b c

d

t

Suppose all arcs with flow value “_” are given value 0. It is possible to send more flow from

s to t.

1. Find an s− t flow with a flow value that is as high as possible. You may write the edge

flow values in the booklet (you do not need to copy the flow network)

We say a flow ismaximum if there does not exist a flow with a higher value.

2 Prove that your s− t flow is a maximum flow.

Value of a flow
Recall the definition of an s− t flow in Section 1.3. The definition is largely in words. It says

The value of an s− t flow is the total flow going out of s.

You can imagine that the (total) flow going out of s should equal the (total) flow going into t.

After all, flow is conserved. We will define flow conservation mathematically, and prove that

this is true.

Define δ+(v) as the set (collection) of arcs going out of v. Define δ−(v) as the set of arcs

going into v. We can write flow conservation as:∑
a∈δ+(v)

fa =
∑

a∈δ−(v)

fa, for all v ∈ V with v 6= s and v 6= t. (4.2.1)

We can rewrite this as:∑
a∈δ+(v)

fa −
∑

a∈δ−(v)

fa = 0, for all v ∈ V with v 6= s and v 6= t. (4.2.2)
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Consider the following flow network with s− t flow f :

f(s,a) = 1
s a b t

1. What can you say about f(a,b) based on Equation (4.2.2)?

2. What can you conclude about the flow going into t? Hint: use 1. and Equation (4.2.2)

again

3. Forget about the above flow network. Prove that for any flow network and any s − t

flow f it holds that ∑
a∈δ+(s)

fa =
∑

a∈δ−(t)

fa. (4.2.3)

Hint: Add all the equations given by (4.2.2).

4.3. Game theory
EXERCISE 4. Find the Nash equilibrium for Prisoner’s dilemma.

4.4. Selfish routing

Optimal flow
EXERCISE 5. Consider the selfish routing game below.

s

u

v

t

`(x) = x2

`(x) = 2

`(x) = 1

`(x) = x

1. Compute the social cost for the flow ( 1
3
, 2
3
).

2. Compute the social cost for the flow (0, 1).

3. Given an x ∈ [0, 1], compute the social cost for the flow (x, 1− x).
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4. What is the optimal flow f∗? Hint: consider the function g(x) = SC(x, 1 − x) for

x ∈ [0, 1].

5. What is the optimal social cost?

Optimal flows versus Nash flows
EXERCISE 6. Consider the following family of Pigou networks. Compute an optimal flow

s t

`P1(x) = ?

`P2(x) = 1

and a Nash flow when:

1. `P1(x) =
x2+x

2
.

2. `P1(x) = x3.

3. `P1(x) = xd, for a given positive integer d.

Tolls on the Pigou network
EXERCISE 7. Recall our Pigou network instance with tolls τ1, τ2 ≥ 0 in Figure 2.3.1.

Of all the possible pairs τ1, τ2 ≥ 0 for which the flow ( 1
2
, 1
2
) is a Nash flow, find a payment

scheme τ∗
1 , τ

∗
2 which minimizes the money the government gets from the drivers.

Using tolls to get a Nash flow
EXERCISE 8. Consider the network below.

s

u

v

t

`(x) = x

`(x) = 0

`(x) = x`(x) = 1

`(x) = 1
τ ≥ 0
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1. In this network, there are three paths from s to t:

• The path s → u → t (let’s call it P1).

• The path s → v → t (let’s call it P2).

• The path s → u → v → t (let’s call it P3).

Compute the social cost for the flow ( 1
3
, 1
3
, 1
3
).

2. Consider adding a toll station to edge u → v. For a given toll-sensitivity parameter

γ > 0, what should the toll τ be so that ( 1
3
, 1
3
, 1
3
) is a Nash flow?

4.5. Queueing theory

Mean queue length
EXERCISE 9. We introduce ρ = λ/µ to make the calculations easier. In theM |M |1 queue
we found that the probability of having i jobs in the system, in equilibrium, equals

pi = (1− ρ)ρi.

1. Of course, the sum of all these probabilities should sum up to 1. Prove that

∞∑
i=0

pi = 1.

Hint

Consider Sn =
∑n

i=0 pi and compute (1− ρ)Sn. What can you say about Sn as

n goes to infinity?

2. We can calculate the mean queue length using these probabilities;

E(L) =
∞∑
i=0

ipi =
∞∑
i=0

i(1− ρ)ρi.

Calculate E(L).

Hint

Take the derivative with respect to ρ of

∞∑
i=1

ρi
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M |M |1|k
EXERCISE 10. In the lecture we drew the transition diagram and calculated the equilibrium

probabilities of theM |M |1 queue, which is a system where 1 job can be served at a time.

In this set of questions, we will consider theM |M |1|k queue. Draw the transition diagram,

calculate the equilibrium probabilities, and find

1. the blocking probability pb.

2. the expected number of customers joining the queue in unit time.

3. the expected number of customers leaving the service station in unit time, and com-

pare it with (2).

4. the degree of utilization of the service station, and compare it with ρ.

5. the expected number of customers in the system E(L).

EXERCISE 11. Explain why the net gain, in the case there areQ = i customers in the sys-

tem, is, on average, equal to

Gi = R− C
i

µ
.

Hint: Remember that the time it takes for a customer to be served follows an exponential

distribution with parameter µ. The expectation of this probability distribution is equal to 1
µ
.

Optimization
EXERCISE 12. We are given that SW in its dependence on n is “discretely unimodal”. This

means that a local maximum is a global maximum.

1. If no is the integer that maximizes SW, prove that n0 shall satisfy

n0(1− ρ)− ρ (1− ρn0)

(1− ρ)2
≤ Rµ

C
<

(n0 + 1)(1− ρ)− ρ (1− ρn0+1)

(1− ρ)2

Hint

Treat SW as a function of n, then n0 shall satisfy SW(n0) ≥ SW(n0 + 1) and

SW(n0) ≥ SW(n0 − 1).

2. Prove that n(1− ρ)− ρ (1− ρn) is increasing with n.

3. This means we have n0 = dv0e, where v0 solves

v0 (1− ρ)− ρ(1− ρv0) = vs (1− ρ)2 .

Can you see n0 ≤ ns?

EXERCISE 13. We know that

M = λR
1− ρn

1− ρn+1

(
1− n

vs

)
.
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Given that M in its dependence on n is ”discretely unimodal”, can you show that nr that

maximize M is nr = dvre, where vr satisfies

vr +
(1− ρvr−1)(1− ρvr+1)

ρvr−1 (1− ρ)2
= vs ?
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Chapter 5

Solutions to exercises

5.1. Probability theory

Conditional probabilities and expectations
1.

P(X = 6) = P(you get a 6 when rolling a six-sided die) = 1

6
,

since it is equally probable to obtain any of the six sides.

2. This is a conditional probability. You don’t know exactly what the outcome is but you

know that it is at least 4. This means that the die number is either a 4 or a 5 or a 6.

Yes now you have three possible outcomes, given the condition, not six. All three are

equally probable, hence the desired probability is equal to

P(X = 6|X ≥ 4) =
1

3
.

3.

P(X = 6|X ≥ 4) =
P({X = 6} and {X ≥ 4})

P(X ≥ 4)
=

1
6
1
2

=
1

3
. (5.1.1)

4.

E(X) =

6∑
i=1

iP(X = i) =
1

6

6∑
i=1

= 3.

5.

E(X|X ≥ 4) =

6∑
i=1

iP(X = i|X ≥ 4) = 5.
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The exponential distribution
1.

P(X ≥ t) = 1− P(X < t) = e−λt.

2.

P(1 < X < 2) = P(X < 2)− P(X < 1) = e−λ − e−2λ.

3.

E(X) =
1

λ
.

4.

P(X > t+ u andX > t) = P(X > t+ u),

because ifX > t + u then it will also happen thatX > t. The rest follows by doing

one more computation.

5.2. Graph Theory

Maximum flows
1. The following is a maximum flow:

5/5

0/5

5/5 1/1

0/24/4

4/4

0/4
4/4

s

a

b c

d

t

More answers are correct. As long as the flow has value 5 it is maximum. Of course,

flow conservation must hold and arc capacities may not be exceeded.

2. Observe that any flow from s to tmust pass through the arcs (c, t) and/or (d, t). So the

value of any s − t flow can be no more than the sum of the capacities of these arcs.

This sum is 5. We have found a flow of value 5. Hence it must be a maximum flow.
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Value of a flow
1. f(a,b) = f(s,a)

2. f(b,t) = f(a,b) = f(s,a) = 1. The flow going into t is 1.

3. Add the flow conservation equation for all the vertices except s and t. Observe that

any arc a between two vertices (that are both not s and t) appears once as an outgo-

ing arc, and once as an ingoing arc. Hence, the value fa will cancel out, as it is added

exactly once, and subtracted once. What remains are the arcs that include s, which

we assumed were only outgoing arcs, and the arcs including t, which we assumed

were only ingoing arcs, so they are subtracted. The equality follows from the fact that

one minus the other should be zero.

5.3. Selfish routing
Exercise 1

1. For the flow ( 1
3
, 2
3
), the social cost is

SC

(
1

3
,
2

3

)
= `P1

(
1

3
,
2

3

)
· 1
3
+ `P2

(
1

3
,
2

3

)
· 2
3

=

(
`(s,u)

(
1

3

)
+ `(u,t)

(
1

3

))
· 1
3
+

(
`(s,v)

(
2

3

)
+ `(v,t)

(
2

3

))
· 2
3

=

(
1

9
+ 1

)
· 1
3
+

(
2 +

2

3

)
· 2
3

=
58

27
≈ 2.148.

2. For the flow (0, 1), the social cost is

SC (0, 1) = `P1 (0, 1) · 0 + `P2 (0, 1) · 1 =
(
`(s,v) (1) + `(v,t) (1)

)
· 1 = (2 + 1) · 1 = 3.

3. Given an x ∈ [0, 1], the social cost of the flow (x, 1− x) is

SC (x, 1− x) = `P1 (x, 1− x) · x+ `P2 (x, 1− x) · (1− x)

=
(
`(s,u) (x) + `(u,t) (x)

)
· x+

(
`(s,v) (1− x) + `(v,t) (1− x)

)
· (1− x)

=
(
x2 + 1

)
· x+ (2 + 1− x) · (1− x) = x3 + x2 − 3x+ 3.

4. To find the optimal flow f∗, we need tominimize the function g(x) = SC(x, 1 − x) =

x3 + x2 − 3x+ 3 for x ∈ [0, 1].

We have that g′(x) = 3x2 + 2x − 3 = (3x+1)2−10
3

and g′′(x) = 6x + 2 > 0 for

all x ∈ [0, 1]. Therefore, to find the minimum of the function g(x), we need to find

the point x∗ ∈ [0, 1] such that g′(x∗) = 0. This equation has two solutions, namely
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x∗
1 =

√
10−1
3

and x∗
2 = −

√
10−1
3

. Since, we are interested in the interval [0, 1], we keep

the first solution and conclude that that the optimal flow f∗ is
(√

10−1
3

, 1−
√
10−1
3

)
.

Computing the social cost of f∗ can now be done via the definition.

Exercise 2: The Nash flow is (1, 0) since `P1(1) = 1 ≤ `P2(0) for all three functions. To

compute the optimal flow we work as follows:

1. When `P1(x) =
x2+x

2
, the social cost of (x, 1− x) for x ∈ [0, 1] is

SC(x, 1− x) = `P1(x) · x+ `P2(x) · (1− x) =
x3 + x2

2
+ 1− x.

Consider the function g(x) = x3+x2

2
+ 1 − x. We have that g′(x) = 3

2
x2 + x − 1 and

g′′(x) = 3x+ 1 > 0 for all x ∈ [0, 1]. We need to find an x∗ ∈ [0, 1] so that g′(x∗) = 0 to

find the minimum. This is true for x∗ =
√
7−1
3

≈ 0.549. Therefore, the optimal flow f∗

is
(√

7−1
3

, 1−
√
7−1
3

)
.

2. When `P1(x) = x3, the social cost of (x, 1− x) for x ∈ [0, 1] is

SC(x, 1− x) = `P1(x) · x+ `P2(x) · (1− x) = x4 + 1− x.

Consider the function g(x) = x4 + 1 − x. We have that g′(x) = 4x3 − 1 and g′′(x) =

12x ≥ 0 for all x ∈ [0, 1]. We need to find an x∗ ∈ [0, 1] so that g′(x∗) = 0 to find the

minimum. This is true for x∗ = 3

√
1
4
≈ 0.63. Therefore, the optimal flow f∗ is

(
3

√
1
4

)
.

3. By generalizing the derivation above, we have that

SC(x, 1− x) = `P1(x) · x+ `P2(x) · (1− x) = xd+1 + 1− x.

Consider the function g(x) = xd+1 + 1 − x. Its derivative is g′(x) = (d + 1)xd− and it

holds that g′′(x) = d(d + 1)xd−1 ≥ 0. By solving for an x∗ ∈ [0, 1] with g′(x∗) = 0 we

obtain that x∗ = d

√
1

d+1
. Thus, the optimal flow f∗ is

(
d

√
1

d+1
, 1− d

√
1

d+1

)
.

Exercise 3: Recall that in order to have the flow ( 1
2
, 1
2
) be a Nash flow, τ1 ≥ 0, τ2 ≥ 0 need

to be such that τ1 = 1
2γ

+ τ2 holds for every sensitivity parameter γ. To find the pair which

minimizes the money the government gets from drivers, we need to find a pair (τ∗
1 , τ

∗
2 )

which minimize τ∗
1 + τ∗

2 = 1
2γ

+ 2τ∗
2 . It is easy to see that this function is minimized for

τ∗
2 = 0. Therefore, the tolls that minimize the moeny the goverment gets are τ∗

1 = 1
2γ
and

τ∗
2 = 0.

Exercise 4:
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1. The social cost of the flow
(
1
3
, 1
3
, 1
3

)
is:

SC

(
1

3
,
1

3
,
1

3

)
= `P1

(
1

3
,
1

3
,
1

3

)
· 1
3
+ `P2

(
1

3
,
1

3
,
1

3

)
· 1
3
+ `P3

(
1

3
,
1

3
,
1

3

)
1

3

=
1

3
·
((

`(s,u)

(
2

3

)
+ `(u,t)

(
1

3

))
+

(
`(s,v)

(
1

3

)
+ `(v,t)

(
2

3

)))
+

(
`(s,u)

(
2

3

)
+ `(u,v)

(
1

3

)
`(v,t)

(
2

3

))
=

1

3
·
(
2

3
+ 1 + 1 +

2

3
+

2

3
+ 0 +

2

3

)
=

14

9
≈ 1.556.

2. To guarantee that
(
1
3
, 1
3
, 1
3

)
is a Nash flow, the cost for each of the three paths P1, P2, P3

must be equal (see Definition of Nash flow). Observe that this is already for paths P1

and P2 as they do not contain the edge u → v and, therefore, do not depend on the

toll τ we impose. Therefore, it suffices to guarantee that the cost of P3 equals the

cost on the other two paths. In particular, τ must be such that

c(s,u)

(
2

3

)
+ c(u,t)

(
1

3

)
= c(s,u)

(
2

3

)
+ c(u,v)

(
1

3

)
+ c(t,u)

(
2

3

)
,

which is equivalent to

c(u,v)

(
1

3

)
= c(u,t)

(
1

3

)
− c(t,u)

(
2

3

)
= 1− 2

3
=

1

3
.

By observing that c(u,v)
(
1
3

)
= γτ we obtain that

τ =
1

3γ
.

5.4. Queueing theory

Mean queue length

1.

∞∑
i=0

pi =

∞∑
i=0

(1− ρ)ρi = (1− ρ)

∞∑
i=0

ρi.
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Geometric sum

For the geometric sum we have that

n∑
i=0

ωi =
1− ωn+1

1− ω
.

Hence we have that

∞∑
i=0

ωi = lim
n→∞

n∑
i=0

ωi = lim
n→∞

(
1− ωn+1

1− ω

)
,

and hence for ω ∈ (0, 1)
∞∑
i=0

ωi =
1

1− ω
.

Using this result the answer follows.

2.

∞∑
i=0

i(1− ρ)ρi =

∞∑
i=1

i(1− ρ)ρi = ρ(1− ρ)

∞∑
i=1

iρi−1

= ρ(1− ρ)

(
∞∑
i=0

ρi
)′

= ρ(1− ρ)

(
1

1− ρ

)′

=
ρ

1− ρ
.

M |M |1|k
1.

k∑
i=0

pi =

k∑
i=0

p0 ρ
i = 1

Thus

p0 =
1− ρ

1− ρk+1
pk =

(1− ρ)ρk

1− ρk+1

2. λ(1− pk)

3. µ(1− p0)

4. 1− p0 < ρ

5.

E [L] =
ρ

1− ρ
− (k + 1)ρk+1

1− ρk+1
.

Optimization
1. Consider the cases when ρ < 0 and ρ > 0.
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2.

(n+ 1)(1− ρ)− ρ(1− ρn+1)− n(1− ρ)− ρ(1− ρn) = (1− ρ)(1− ρn+1) > 0

3.

Hint

Consider the value and derivative of (v0 (1 − ρ) − ρ(1 − ρv0))(1 − ρ)−2 when

v0 = 1.
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