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Queueing theory

▶ Should I join the line or not?

▶ How can we reduce the waiting times?

▶ How much shall we charge for the service based on our service
rate?
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Queueing theory

▶ (Customer perspective) - Should I join the line or not?

▶ (Social planner perspective) - How can we reduce the waiting
times?

▶ (System manager perspective) - How much shall we charge
for the service based on our service rate?
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M/M/1 queue

0 1 2 . . . n− 1 n . . .
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M/M/1 queue

0 1 2 . . . n− 1 n . . .

λ λ λ

µ µ µ

▶ L: total customers, which is a random variable
▶ λ: arrival rate
▶ µ: departure rate

pi = P(L = i)

λ p0 = µ p1

λ p1 = µ p2

λ p2 = µ p3

. . .

λ pi−1 = µ pi
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M/M/1 queue

▶ L: total customers
▶ λ: arrival rate
▶ µ: departure rate

λ p0 = µ p1 ⇒ p1 =
λ

µ
p0

λ p1 = µ p2 ⇒ p2 =
λ

µ
p1 =

(
λ

µ

)2

p0

λ p2 = µ p3 ⇒ p3 =
λ

µ
p2 =

(
λ

µ

)3

p0

. . . λ pi−1 = µ pi ⇒ pi =
λ

µ
pi−1 =

(
λ

µ

)i

p0
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M/M/1 queue

Question: We introduce ρ = λ/µ to make the calculations easier.
In the M|M|1 queue,

▶ find the probability pi , in terms of ρ,
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M/M/1 queue

▶ The sum
∑∞

i=0 pi = 1, thus

p0

∞∑
i=0

= p0
1

1− ρ
= 1 .

It follows that

p0 = 1− ρ, pi = ρi (1− ρ0) .
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M/M/1 queue

▶ find the mean queue length E[L]

We know from the previous slides that

1. L is a random variable,

2. L can take values from {0, 1, . . .},
3. The probability that L = i is from the previous question

pi = (1− ρ)ρi ,

4. From the definition of expected value, E[L] =
∑∞

i=0 ipi .
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M/M/1 queue

E[L] =
∞∑
i=0

I pi =
∞∑
i=0

i(1− ρ)ρi

= ρ(1− ρ)
∞∑
i=1

iρi−1

= ρ(1− ρ)

( ∞∑
i=0

ρi

)′

= ρ(1− ρ)

(
1

1− ρ

)′

=
ρ

1− ρ
.
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Strategic customers

Customers can choose to join or not join the queue.

▶ the arrival process is Poisson with rate λ, the service time is
exponentially distributed with rate µ.

▶ On successful completion of service, the customer is rewarded
R (expressible in monetary units). All customer rewards are
equal.

▶ The cost to a customer for staying in a queue (i.e. for
queueing) is C monetary units in unit time.

▶ Each arriving customer weighs the net gains associated with
joining or not joining.
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Strategic customers - net gain

Q: What is the net gain, if a customer chooses to join, when she
observes i people in the system?

1. the service time is exponentially distributed with rate µ.

2. the expected value of the service time is 1
µ .

3. the cost is C monetary units in unit time, thus the expected
cost of waiting for one customer finishing her service is C

µ .

4. the total expected waiting cost is C i
µ .

The net gain is thus

Gi = R − C
i

µ
.
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Strategic customers - join

Customers choose to join if the net gain is positive.

That is

R − C
i

µ
≥ 0
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Customers choose to join if the net gain is positive. That is
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i

µ
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Strategic customers - net gain

There exists an integer ns that satisfies the two inequalities

R − C
ns
µ

≥ 0 R − C
ns + 1

µ
< 0 .

An arriving customer will choose to join if L ≤ ns .

Note that ns must be an integer, thus

ns =

⌊
Rµ

C

⌋
,

which denotes the largest integer not exceeding Rµ/C . Note that
ns depends on µ,R,C , but not on the arrival rate λ.
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M/M/1/k queue

The M/M/1/k queue is a finite-capacity queueing system.

▶ The system has a finite capacity of k (including the customer
being served).

▶ Only one job receives service at a time.

▶ Whenever a job arrives and the system is full, it will be
blocked and it will leave forever.
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M/M/1/k queue

Q: Draw the flow diagram for the M/M/1/k queue
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M/M/1/k queue

Q: Draw the flow diagram for the M/M/1/k queue
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M/M/1/k

For an M/M/1/k, calculate

▶ the probability that there are i customers in the queue.

k∑
i=0

pi =
k∑

i=0

p0 ρ
i = 1

Thus

p0 =
1− ρ

1− ρk+1
pi =

(1− ρ)ρi

1− ρk+1

▶ the probability that an arriving customer is blocked.

pb := pk =
(1− ρ)ρk

1− ρk+1
.
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M/M/1/k

▶ the expected number of customers joining the queue in unit
time:

λ (1− pk) = λ
1− ρk

1− ρk+1

▶ the expected number of customers leaving the service station
in unit time:

µ (1− p0) = µ
ρ (1− ρk)

1− ρk+1
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M/M/1/k

▶ the probability that the server is busy (also called degree of
utilization)

1− p0 = ρ
1− ρk

1− ρk+1
< ρ .

▶ the expected number of customers in the system E[L]:

p0

k∑
i=0

iρi = ρp0

k∑
i=0

iρi−1 = ρp0

k∑
i=0

(ρi )′ =
ρ

1− ρ
−(k + 1)ρk+1

1− ρk+1
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Overall optimization

From a social planner’s perspective, the goal is to optimize the
social welfare (SW), defined here as the total expected net benefit
to society.

▶ the total arrival rate is λ,

▶ the probability each customer joins the system is 1− pk ,

▶ each joining customer’s net gain is R − CE[W ], where E[W ]
is the expected waiting time.
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Overall optimization

Q: Use Little’s law to derive the expression of the social welfare.

Little’s law

E[L] = λE[W ],

where λ is the rate of customers joining the system.

Net gain

R − CE[W ] = R − 1

(1− pK )λ
CE[L] .

Note that the payoff for customers that don’t join the queue is
simply zero. This means that the social welfare (the total payoff
per unit time) is

SW = λ(1− pK )

(
R − 1

1− pK
CE[L]

)
= λR(1− pK )− C E[L].
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Overall optimization

SW = λR
1− ρk

1− ρk+1
− C

(
ρ

1− ρ
− (k + 1)ρk+1

1− ρk+1

)

Given that SW’s dependence on n is ”discretely unimodal”. In
Other words, a local maximum is a global maximum.

▶ If no is the integer that maximizes SW, prove that n0 shall
satisfy

n0(1− ρ)− ρ (1− ρn0)

(1− ρ)2
≤ R µ

C
<

(n0 + 1)(1− ρ)− ρ (1− ρn0+1)

(1− ρ)2

Hint: SW(n0) ≥ SW(n0 + 1) and SW(n0) ≥ SW(n0 − 1).
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Overall optimization

▶ Prove that n0(1− ρ)− ρ (1− ρn0) is increasing with n.

(n+1)(1−ρ)−ρ(1−ρn+1)−(n(1− ρ)− ρ(1− ρn)) = (1−ρ)(1−ρn+1)

▶ This means we have n0 = ⌈v0⌉, where v0 solves

v0 (1− ρ)− ρ(1− ρv0) = vs (1− ρ)2 .

Can you see n0 ≤ ns?

Consider the value and derivative of
(v0 (1− ρ)− ρ(1− ρv0))(1− ρ)−2 when v0 = 1.

28
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Revenue maximization

Imagine that a toll-collecting agency seeks to impose a toll θ, to
maximize its revenue rather than optimize the whole system.
How to calculate the total revenue?

▶ Each joining customer will bring a profit of θ,

▶ With price θ, each customer will join only when

R − θ − C
i

µ
≥ 0,

where i is the number of customers in the system.
Thus, there exists an integer n such that

R − θ − C
n

µ
≥ 0 R − θ − C

n + 1

µ
< 0

29
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Revenue maximization

Q: Given n, could you write down the expression for the total
revenue?

M = λ (1− pn) θ

Note that we just need to make a little bit smaller than R − C n
µ , n

stays unchanged, thus we can write

M = λ (1− pn) θ = λ (1− pn)

(
R − C

n

µ

)
.

30



30
Revenue maximization

Q: Given n, could you write down the expression for the total
revenue?

M = λ (1− pn) θ

Note that we just need to make a little bit smaller than R − C n
µ , n

stays unchanged, thus we can write

M = λ (1− pn) θ = λ (1− pn)

(
R − C

n

µ

)
.

30



30
Revenue maximization

Q: Given n, could you write down the expression for the total
revenue?

M = λ (1− pn) θ

Note that we just need to make a little bit smaller than R − C n
µ , n

stays unchanged, thus we can write

M = λ (1− pn) θ

= λ (1− pn)

(
R − C

n

µ

)
.

30



30
Revenue maximization

Q: Given n, could you write down the expression for the total
revenue?

M = λ (1− pn) θ

Note that we just need to make a little bit smaller than R − C n
µ , n

stays unchanged, thus we can write

M = λ (1− pn) θ = λ (1− pn)

(
R − C

n

µ

)
.

30



31
Revenue maximization

Q: Given that M increases with n first and then decreases with n,
what is nr that maximizes M?

We want to make a comparison between nr and ns later, so let’s
write

M = λR
1− ρn

1− ρn+1

(
1− n

vs

)
,

where vs =
Rµ
C as defined before.

We transform the above question to:
Can you show that nr that maximize M is nr = ⌊vr⌋, where vr
satisfies

vr +
(1− ρvr−1)(1− ρvr+1)

ρvr−1 (1− ρ)2
= vs ?

Compare vr with vs .
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1− ρn

1− ρn+1

(
1− n

vs

)
,

where vs =
Rµ
C as defined before.

We transform the above question to:
Can you show that nr that maximize M is nr = ⌊vr⌋, where vr
satisfies

vr +
(1− ρvr−1)(1− ρvr+1)

ρvr−1 (1− ρ)2
= vs ?

Compare vr with vs .
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Thank You!

ThanQueue
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